MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd2 Structured version   Visualization version   GIF version

Theorem pntpbnd2 26735
Description: Lemma for pntpbnd 26736. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd2 ¬ 𝜑
Distinct variable groups:   𝑖,𝑗,𝑦,𝐾   𝑅,𝑖,𝑗,𝑦   𝑖,𝑎,𝑗,𝑦,𝐴   𝑦,𝐸   𝑖,𝑌,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2div2e1 12114 . . 3 (2 / 2) = 1
2 2re 12047 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
4 ioossre 13140 . . . . . 6 (0(,)1) ⊆ ℝ
5 pntpbnd1.e . . . . . 6 (𝜑𝐸 ∈ (0(,)1))
64, 5sselid 3919 . . . . 5 (𝜑𝐸 ∈ ℝ)
7 eliooord 13138 . . . . . . 7 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
85, 7syl 17 . . . . . 6 (𝜑 → (0 < 𝐸𝐸 < 1))
98simpld 495 . . . . 5 (𝜑 → 0 < 𝐸)
106, 9elrpd 12769 . . . 4 (𝜑𝐸 ∈ ℝ+)
11 2rp 12735 . . . . 5 2 ∈ ℝ+
1211a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
13 pntpbnd1.c . . . . . . . . 9 𝐶 = (𝐴 + 2)
1413oveq1i 7285 . . . . . . . 8 (𝐶𝐴) = ((𝐴 + 2) − 𝐴)
15 pntpbnd1.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
1615rpcnd 12774 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
17 2cn 12048 . . . . . . . . 9 2 ∈ ℂ
18 pncan2 11228 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 2) − 𝐴) = 2)
1916, 17, 18sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 + 2) − 𝐴) = 2)
2014, 19eqtrid 2790 . . . . . . 7 (𝜑 → (𝐶𝐴) = 2)
2120oveq1d 7290 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = (2 / 𝐸))
22 rpaddcl 12752 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
2315, 11, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 + 2) ∈ ℝ+)
2413, 23eqeltrid 2843 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
2524rpcnd 12774 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
266recnd 11003 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
2710rpne0d 12777 . . . . . . 7 (𝜑𝐸 ≠ 0)
2825, 16, 26, 27divsubdird 11790 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
2921, 28eqtr3d 2780 . . . . 5 (𝜑 → (2 / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
3024, 10rpdivcld 12789 . . . . . . 7 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
3130rpred 12772 . . . . . 6 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3215rpred 12772 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3332, 10rerpdivcld 12803 . . . . . 6 (𝜑 → (𝐴 / 𝐸) ∈ ℝ)
34 resubcl 11285 . . . . . . . 8 (((𝐶 / 𝐸) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 / 𝐸) − 2) ∈ ℝ)
3531, 2, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ∈ ℝ)
36 pntpbnd1.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
3731reefcld 15797 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 elicopnf 13177 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
4036, 39mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾))
4140simpld 495 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
42 0red 10978 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
43 1re 10975 . . . . . . . . . . . 12 1 ∈ ℝ
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
45 0lt1 11497 . . . . . . . . . . . 12 0 < 1
4645a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
47 efgt1 15825 . . . . . . . . . . . . 13 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
4830, 47syl 17 . . . . . . . . . . . 12 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
4940simprd 496 . . . . . . . . . . . 12 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
5044, 37, 41, 48, 49ltletrd 11135 . . . . . . . . . . 11 (𝜑 → 1 < 𝐾)
5142, 44, 41, 46, 50lttrd 11136 . . . . . . . . . 10 (𝜑 → 0 < 𝐾)
5241, 51elrpd 12769 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
5352relogcld 25778 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ)
54 resubcl 11285 . . . . . . . 8 (((log‘𝐾) ∈ ℝ ∧ 2 ∈ ℝ) → ((log‘𝐾) − 2) ∈ ℝ)
5553, 2, 54sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ∈ ℝ)
5652reeflogd 25779 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐾)) = 𝐾)
5749, 56breqtrrd 5102 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾)))
58 efle 15827 . . . . . . . . . 10 (((𝐶 / 𝐸) ∈ ℝ ∧ (log‘𝐾) ∈ ℝ) → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
5931, 53, 58syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
6057, 59mpbird 256 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ≤ (log‘𝐾))
6131, 53, 3, 60lesub1dd 11591 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ ((log‘𝐾) − 2))
62 fzfid 13693 . . . . . . . . 9 (𝜑 → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
63 ioossre 13140 . . . . . . . . . . . . . . 15 (𝑋(,)+∞) ⊆ ℝ
64 pntpbnd1.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑋(,)+∞))
6563, 64sselid 3919 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
66 pntpbnd1.x . . . . . . . . . . . . . . . . 17 𝑋 = (exp‘(2 / 𝐸))
67 rerpdivcl 12760 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
682, 10, 67sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 / 𝐸) ∈ ℝ)
6968reefcld 15797 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
7066, 69eqeltrid 2843 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
71 efgt0 15812 . . . . . . . . . . . . . . . . . 18 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
7268, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < (exp‘(2 / 𝐸)))
7372, 66breqtrrdi 5116 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑋)
7470rexrd 11025 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ*)
75 elioopnf 13175 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7764, 76mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
7877simprd 496 . . . . . . . . . . . . . . . 16 (𝜑𝑋 < 𝑌)
7942, 70, 65, 73, 78lttrd 11136 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑌)
8042, 65, 79ltled 11123 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑌)
81 flge0nn0 13540 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
8265, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
83 nn0p1nn 12272 . . . . . . . . . . . . 13 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
85 elfzuz 13252 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
86 eluznn 12658 . . . . . . . . . . . 12 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
8784, 85, 86syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
8887peano2nnd 11990 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
8988nnrecred 12024 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
9062, 89fsumrecl 15446 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ∈ ℝ)
9153recnd 11003 . . . . . . . . . 10 (𝜑 → (log‘𝐾) ∈ ℂ)
92 2cnd 12051 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
9365, 79elrpd 12769 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
9493relogcld 25778 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ∈ ℝ)
9594recnd 11003 . . . . . . . . . 10 (𝜑 → (log‘𝑌) ∈ ℂ)
9691, 92, 95pnpcan2d 11370 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) = ((log‘𝐾) − 2))
9752, 93relogmuld 25780 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) = ((log‘𝐾) + (log‘𝑌)))
9853, 94readdcld 11004 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ∈ ℝ)
9997, 98eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ∈ ℝ)
100 fzfid 13693 . . . . . . . . . . . . . 14 (𝜑 → (0...(⌊‘𝑌)) ∈ Fin)
101 elfznn0 13349 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...(⌊‘𝑌)) → 𝑛 ∈ ℕ0)
102101adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → 𝑛 ∈ ℕ0)
103 nn0p1nn 12272 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (𝑛 + 1) ∈ ℕ)
105104nnrecred 12024 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (1 / (𝑛 + 1)) ∈ ℝ)
106100, 105fsumrecl 15446 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ∈ ℝ)
107106, 90readdcld 11004 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
108 readdcl 10954 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 + (log‘𝑌)) ∈ ℝ)
1092, 94, 108sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 + (log‘𝑌)) ∈ ℝ)
110109, 90readdcld 11004 . . . . . . . . . . . 12 (𝜑 → ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
11141, 65remulcld 11005 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
11265recnd 11003 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℂ)
113112mulid2d 10993 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) = 𝑌)
11444, 41, 50ltled 11123 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
115 lemul1 11827 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
11644, 41, 65, 79, 115syl112anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
117114, 116mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) ≤ (𝐾 · 𝑌))
118113, 117eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ≤ (𝐾 · 𝑌))
11942, 65, 111, 80, 118letrd 11132 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐾 · 𝑌))
120 flge0nn0 13540 . . . . . . . . . . . . . . . . . 18 (((𝐾 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
121111, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
122 nn0p1nn 12272 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝐾 · 𝑌)) ∈ ℕ0 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
123121, 122syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
124123nnrpd 12770 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℝ+)
125124relogcld 25778 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ∈ ℝ)
126 1zzd 12351 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
127111flcld 13518 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
128127peano2zd 12429 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℤ)
129 elfznn 13285 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1)) → 𝑘 ∈ ℕ)
130129adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → 𝑘 ∈ ℕ)
131 nnrecre 12015 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
132131recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
133130, 132syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → (1 / 𝑘) ∈ ℂ)
134 oveq2 7283 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (1 / 𝑘) = (1 / (𝑛 + 1)))
135126, 126, 128, 133, 134fsumshftm 15493 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)))
136 1m1e0 12045 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
137136a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 − 1) = 0)
138127zcnd 12427 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℂ)
139 ax-1cn 10929 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
140 pncan 11227 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(𝐾 · 𝑌)) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
141138, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
142137, 141oveq12d 7293 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1)) = (0...(⌊‘(𝐾 · 𝑌))))
143142sumeq1d 15413 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
144 reflcl 13516 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
14565, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ∈ ℝ)
146145ltp1d 11905 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
147 fzdisj 13283 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) < ((⌊‘𝑌) + 1) → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
149 flwordi 13532 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
15065, 111, 118, 149syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
151 elfz2nn0 13347 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘𝑌) ∈ ℕ0 ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℕ0 ∧ (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌))))
15282, 121, 150, 151syl3anbrc 1342 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))))
153 fzsplit 13282 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
154152, 153syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
155 fzfid 13693 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
156 elfznn0 13349 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ ℕ0)
157156adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ0)
158157, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
159158nnrecred 12024 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
160159recnd 11003 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
161148, 154, 155, 160fsumsplit 15453 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
162135, 143, 1613eqtrd 2782 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
163162, 107eqeltrd 2839 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) ∈ ℝ)
164 fllep1 13521 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑌) ∈ ℝ → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
165111, 164syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
16652, 93rpmulcld 12788 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · 𝑌) ∈ ℝ+)
167166, 124logled 25782 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1) ↔ (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
168165, 167mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1)))
169 emre 26155 . . . . . . . . . . . . . . . . 17 γ ∈ ℝ
170169a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → γ ∈ ℝ)
171163, 125resubcld 11403 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ)
172 0re 10977 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
173 emgt0 26156 . . . . . . . . . . . . . . . . . 18 0 < γ
174172, 169, 173ltleii 11098 . . . . . . . . . . . . . . . . 17 0 ≤ γ
175174a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ γ)
176 harmonicbnd 26153 . . . . . . . . . . . . . . . . . 18 (((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
177123, 176syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
178169, 43elicc2i 13145 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ≤ 1))
179178simp2bi 1145 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
180177, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
18142, 170, 171, 175, 180letrd 11132 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
182163, 125subge0d 11565 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ↔ (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘)))
183181, 182mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
18499, 125, 163, 168, 183letrd 11132 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
185184, 162breqtrd 5100 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
18665flcld 13518 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
187186peano2zd 12429 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
188 elfznn 13285 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...((⌊‘𝑌) + 1)) → 𝑘 ∈ ℕ)
189188adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → 𝑘 ∈ ℕ)
190189, 132syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → (1 / 𝑘) ∈ ℂ)
191126, 126, 187, 190, 134fsumshftm 15493 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)))
192145recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ ℂ)
193 pncan 11227 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
194192, 139, 193sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
195137, 194oveq12d 7293 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1)...(((⌊‘𝑌) + 1) − 1)) = (0...(⌊‘𝑌)))
196195sumeq1d 15413 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
197191, 196eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
198197, 106eqeltrd 2839 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ∈ ℝ)
19984nnrpd 12770 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
200199relogcld 25778 . . . . . . . . . . . . . . . 16 (𝜑 → (log‘((⌊‘𝑌) + 1)) ∈ ℝ)
201 readdcl 10954 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (log‘((⌊‘𝑌) + 1)) ∈ ℝ) → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
20243, 200, 201sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
203 harmonicbnd 26153 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
20484, 203syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
205169, 43elicc2i 13145 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1))
206205simp3bi 1146 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
207204, 206syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
208198, 200, 44lesubaddd 11572 . . . . . . . . . . . . . . . 16 (𝜑 → ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1 ↔ Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1)))))
209207, 208mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1))))
210 readdcl 10954 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (1 + (log‘𝑌)) ∈ ℝ)
21143, 94, 210sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (log‘𝑌)) ∈ ℝ)
212 peano2re 11148 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
213145, 212syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ)
2143, 65remulcld 11005 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ∈ ℝ)
215 epr 15917 . . . . . . . . . . . . . . . . . . . . . 22 e ∈ ℝ+
216 rpmulcl 12753 . . . . . . . . . . . . . . . . . . . . . 22 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (e · 𝑌) ∈ ℝ+)
217215, 93, 216sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (e · 𝑌) ∈ ℝ+)
218217rpred 12772 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (e · 𝑌) ∈ ℝ)
219 flle 13519 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
22065, 219syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (⌊‘𝑌) ≤ 𝑌)
22112, 10rpdivcld 12789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (2 / 𝐸) ∈ ℝ+)
222 efgt1 15825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 / 𝐸) ∈ ℝ+ → 1 < (exp‘(2 / 𝐸)))
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 < (exp‘(2 / 𝐸)))
224223, 66breqtrrdi 5116 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑋)
22544, 70, 65, 224, 78lttrd 11136 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑌)
22644, 65, 225ltled 11123 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≤ 𝑌)
227145, 44, 65, 65, 220, 226le2addd 11594 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((⌊‘𝑌) + 1) ≤ (𝑌 + 𝑌))
2281122timesd 12216 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑌) = (𝑌 + 𝑌))
229227, 228breqtrrd 5102 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ≤ (2 · 𝑌))
230 ere 15798 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ
231 egt2lt3 15915 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
232231simpli 484 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
2332, 230, 232ltleii 11098 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ e
234233a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ e)
235230a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → e ∈ ℝ)
236 lemul1 11827 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
2373, 235, 65, 79, 236syl112anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
238234, 237mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ≤ (e · 𝑌))
239213, 214, 218, 229, 238letrd 11132 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘𝑌) + 1) ≤ (e · 𝑌))
240199, 217logled 25782 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((⌊‘𝑌) + 1) ≤ (e · 𝑌) ↔ (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌))))
241239, 240mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌)))
242 relogmul 25747 . . . . . . . . . . . . . . . . . . . 20 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
243215, 93, 242sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
244 loge 25742 . . . . . . . . . . . . . . . . . . . 20 (log‘e) = 1
245244oveq1i 7285 . . . . . . . . . . . . . . . . . . 19 ((log‘e) + (log‘𝑌)) = (1 + (log‘𝑌))
246243, 245eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘(e · 𝑌)) = (1 + (log‘𝑌)))
247241, 246breqtrd 5100 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (1 + (log‘𝑌)))
248200, 211, 44, 247leadd2dd 11590 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (1 + (1 + (log‘𝑌))))
249 df-2 12036 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
250249oveq1i 7285 . . . . . . . . . . . . . . . . 17 (2 + (log‘𝑌)) = ((1 + 1) + (log‘𝑌))
251139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
252251, 251, 95addassd 10997 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
253250, 252eqtrid 2790 . . . . . . . . . . . . . . . 16 (𝜑 → (2 + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
254248, 253breqtrrd 5102 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (2 + (log‘𝑌)))
255198, 202, 109, 209, 254letrd 11132 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (2 + (log‘𝑌)))
256197, 255eqbrtrrd 5098 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ≤ (2 + (log‘𝑌)))
257106, 109, 90, 256leadd1dd 11589 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25899, 107, 110, 185, 257letrd 11132 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25997, 258eqbrtrrd 5098 . . . . . . . . . 10 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
26098, 109, 90lesubadd2d 11574 . . . . . . . . . 10 (𝜑 → ((((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ↔ ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))))
261259, 260mpbird 256 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26296, 261eqbrtrrd 5098 . . . . . . . 8 (𝜑 → ((log‘𝐾) − 2) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26389recnd 11003 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
26462, 26, 263fsummulc2 15496 . . . . . . . . . 10 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))))
2656adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℝ)
266265recnd 11003 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℂ)
26788nncnd 11989 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℂ)
26888nnne0d 12023 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ≠ 0)
269266, 267, 268divrecd 11754 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) = (𝐸 · (1 / (𝑛 + 1))))
270265, 88nndivred 12027 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ∈ ℝ)
271269, 270eqeltrrd 2840 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27262, 271fsumrecl 15446 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27387nnrpd 12770 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
274 pntpbnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
275274pntrf 26711 . . . . . . . . . . . . . . . . 17 𝑅:ℝ+⟶ℝ
276275ffvelrni 6960 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
277273, 276syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
27887, 88nnmulcld 12026 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
279277, 278nndivred 12027 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
280279recnd 11003 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
281280abscld 15148 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28262, 281fsumrecl 15446 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
283277, 87nndivred 12027 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℝ)
284283recnd 11003 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℂ)
285284abscld 15148 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / 𝑛)) ∈ ℝ)
28688nnrpd 12770 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℝ+)
287 pntpbnd1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
288287adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
289 elfzle1 13259 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
290289adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
29165adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 ∈ ℝ)
292291flcld 13518 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) ∈ ℤ)
29387nnzd 12425 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℤ)
294 zltp1le 12370 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑌) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
295292, 293, 294syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
296290, 295mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑛)
297 fllt 13526 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
298291, 293, 297syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
299296, 298mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑛)
300 elfzle2 13260 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
301300adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
302111adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐾 · 𝑌) ∈ ℝ)
303 flge 13525 . . . . . . . . . . . . . . . . . . 19 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
304302, 293, 303syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
305301, 304mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (𝐾 · 𝑌))
306 breq2 5078 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑌 < 𝑦𝑌 < 𝑛))
307 breq1 5077 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (𝐾 · 𝑌)))
308306, 307anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))))
309 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
310 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛𝑦 = 𝑛)
311309, 310oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑛 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑛) / 𝑛))
312311fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑛) / 𝑛)))
313312breq1d 5084 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸))
314308, 313anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)))
315314rspcev 3561 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
316315expr 457 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
31787, 299, 305, 316syl12anc 834 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
318288, 317mtod 197 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)
319285, 265letrid 11127 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
320319ord 861 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
321318, 320mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛)))
322265, 285, 286, 321lediv1dd 12830 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ≤ ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
323284, 267, 268absdivd 15167 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))))
324277recnd 11003 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
32587nncnd 11989 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℂ)
32687nnne0d 12023 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≠ 0)
327324, 325, 267, 326, 268divdiv1d 11782 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / 𝑛) / (𝑛 + 1)) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
328327fveq2d 6778 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
329286rprege0d 12779 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)))
330 absid 15008 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
331329, 330syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
332331oveq2d 7291 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
333323, 328, 3323eqtr3rd 2787 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
334322, 269, 3333brtr3d 5105 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
33562, 271, 281, 334fsumle 15511 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336 pntpbnd1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
337274, 5, 66, 64, 15, 336, 13, 36, 287pntpbnd1 26734 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
338272, 282, 32, 335, 337letrd 11132 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ 𝐴)
339264, 338eqbrtrd 5096 . . . . . . . . 9 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴)
34090, 32, 10lemuldiv2d 12822 . . . . . . . . 9 (𝜑 → ((𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴 ↔ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸)))
341339, 340mpbid 231 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸))
34255, 90, 33, 262, 341letrd 11132 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ≤ (𝐴 / 𝐸))
34335, 55, 33, 61, 342letrd 11132 . . . . . 6 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ (𝐴 / 𝐸))
34431, 3, 33, 343subled 11578 . . . . 5 (𝜑 → ((𝐶 / 𝐸) − (𝐴 / 𝐸)) ≤ 2)
34529, 344eqbrtrd 5096 . . . 4 (𝜑 → (2 / 𝐸) ≤ 2)
3463, 10, 12, 345lediv23d 12840 . . 3 (𝜑 → (2 / 2) ≤ 𝐸)
3471, 346eqbrtrrid 5110 . 2 (𝜑 → 1 ≤ 𝐸)
3488simprd 496 . . 3 (𝜑𝐸 < 1)
349 ltnle 11054 . . . 4 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
3506, 43, 349sylancl 586 . . 3 (𝜑 → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
351348, 350mpbid 231 . 2 (𝜑 → ¬ 1 ≤ 𝐸)
352347, 351pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cun 3885  cin 3886  c0 4256   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  0cn0 12233  cz 12319  cuz 12582  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  ...cfz 13239  cfl 13510  abscabs 14945  Σcsu 15397  expce 15771  eceu 15772  logclog 25710  γcem 26141  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-atan 26017  df-em 26142  df-vma 26247  df-chp 26248
This theorem is referenced by:  pntpbnd  26736
  Copyright terms: Public domain W3C validator