MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd2 Structured version   Visualization version   GIF version

Theorem pntpbnd2 27567
Description: Lemma for pntpbnd 27568. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd2 ¬ 𝜑
Distinct variable groups:   𝑖,𝑗,𝑦,𝐾   𝑅,𝑖,𝑗,𝑦   𝑖,𝑎,𝑗,𝑦,𝐴   𝑦,𝐸   𝑖,𝑌,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2div2e1 12389 . . 3 (2 / 2) = 1
2 2re 12322 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
4 ioossre 13430 . . . . . 6 (0(,)1) ⊆ ℝ
5 pntpbnd1.e . . . . . 6 (𝜑𝐸 ∈ (0(,)1))
64, 5sselid 3961 . . . . 5 (𝜑𝐸 ∈ ℝ)
7 eliooord 13428 . . . . . . 7 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
85, 7syl 17 . . . . . 6 (𝜑 → (0 < 𝐸𝐸 < 1))
98simpld 494 . . . . 5 (𝜑 → 0 < 𝐸)
106, 9elrpd 13056 . . . 4 (𝜑𝐸 ∈ ℝ+)
11 2rp 13021 . . . . 5 2 ∈ ℝ+
1211a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
13 pntpbnd1.c . . . . . . . . 9 𝐶 = (𝐴 + 2)
1413oveq1i 7423 . . . . . . . 8 (𝐶𝐴) = ((𝐴 + 2) − 𝐴)
15 pntpbnd1.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
1615rpcnd 13061 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
17 2cn 12323 . . . . . . . . 9 2 ∈ ℂ
18 pncan2 11497 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 2) − 𝐴) = 2)
1916, 17, 18sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 + 2) − 𝐴) = 2)
2014, 19eqtrid 2781 . . . . . . 7 (𝜑 → (𝐶𝐴) = 2)
2120oveq1d 7428 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = (2 / 𝐸))
22 rpaddcl 13039 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
2315, 11, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 + 2) ∈ ℝ+)
2413, 23eqeltrid 2837 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
2524rpcnd 13061 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
266recnd 11271 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
2710rpne0d 13064 . . . . . . 7 (𝜑𝐸 ≠ 0)
2825, 16, 26, 27divsubdird 12064 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
2921, 28eqtr3d 2771 . . . . 5 (𝜑 → (2 / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
3024, 10rpdivcld 13076 . . . . . . 7 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
3130rpred 13059 . . . . . 6 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3215rpred 13059 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3332, 10rerpdivcld 13090 . . . . . 6 (𝜑 → (𝐴 / 𝐸) ∈ ℝ)
34 resubcl 11555 . . . . . . . 8 (((𝐶 / 𝐸) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 / 𝐸) − 2) ∈ ℝ)
3531, 2, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ∈ ℝ)
36 pntpbnd1.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
3731reefcld 16106 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 elicopnf 13467 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
4036, 39mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾))
4140simpld 494 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
42 0red 11246 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
43 1re 11243 . . . . . . . . . . . 12 1 ∈ ℝ
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
45 0lt1 11767 . . . . . . . . . . . 12 0 < 1
4645a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
47 efgt1 16134 . . . . . . . . . . . . 13 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
4830, 47syl 17 . . . . . . . . . . . 12 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
4940simprd 495 . . . . . . . . . . . 12 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
5044, 37, 41, 48, 49ltletrd 11403 . . . . . . . . . . 11 (𝜑 → 1 < 𝐾)
5142, 44, 41, 46, 50lttrd 11404 . . . . . . . . . 10 (𝜑 → 0 < 𝐾)
5241, 51elrpd 13056 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
5352relogcld 26601 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ)
54 resubcl 11555 . . . . . . . 8 (((log‘𝐾) ∈ ℝ ∧ 2 ∈ ℝ) → ((log‘𝐾) − 2) ∈ ℝ)
5553, 2, 54sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ∈ ℝ)
5652reeflogd 26602 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐾)) = 𝐾)
5749, 56breqtrrd 5151 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾)))
58 efle 16136 . . . . . . . . . 10 (((𝐶 / 𝐸) ∈ ℝ ∧ (log‘𝐾) ∈ ℝ) → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
5931, 53, 58syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
6057, 59mpbird 257 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ≤ (log‘𝐾))
6131, 53, 3, 60lesub1dd 11861 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ ((log‘𝐾) − 2))
62 fzfid 13996 . . . . . . . . 9 (𝜑 → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
63 ioossre 13430 . . . . . . . . . . . . . . 15 (𝑋(,)+∞) ⊆ ℝ
64 pntpbnd1.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑋(,)+∞))
6563, 64sselid 3961 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
66 pntpbnd1.x . . . . . . . . . . . . . . . . 17 𝑋 = (exp‘(2 / 𝐸))
67 rerpdivcl 13047 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
682, 10, 67sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 / 𝐸) ∈ ℝ)
6968reefcld 16106 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
7066, 69eqeltrid 2837 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
71 efgt0 16121 . . . . . . . . . . . . . . . . . 18 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
7268, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < (exp‘(2 / 𝐸)))
7372, 66breqtrrdi 5165 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑋)
7470rexrd 11293 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ*)
75 elioopnf 13465 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7764, 76mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
7877simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑋 < 𝑌)
7942, 70, 65, 73, 78lttrd 11404 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑌)
8042, 65, 79ltled 11391 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑌)
81 flge0nn0 13842 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
8265, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
83 nn0p1nn 12548 . . . . . . . . . . . . 13 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
85 elfzuz 13542 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
86 eluznn 12942 . . . . . . . . . . . 12 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
8784, 85, 86syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
8887peano2nnd 12265 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
8988nnrecred 12299 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
9062, 89fsumrecl 15752 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ∈ ℝ)
9153recnd 11271 . . . . . . . . . 10 (𝜑 → (log‘𝐾) ∈ ℂ)
92 2cnd 12326 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
9365, 79elrpd 13056 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
9493relogcld 26601 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ∈ ℝ)
9594recnd 11271 . . . . . . . . . 10 (𝜑 → (log‘𝑌) ∈ ℂ)
9691, 92, 95pnpcan2d 11640 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) = ((log‘𝐾) − 2))
9752, 93relogmuld 26603 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) = ((log‘𝐾) + (log‘𝑌)))
9853, 94readdcld 11272 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ∈ ℝ)
9997, 98eqeltrd 2833 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ∈ ℝ)
100 fzfid 13996 . . . . . . . . . . . . . 14 (𝜑 → (0...(⌊‘𝑌)) ∈ Fin)
101 elfznn0 13642 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...(⌊‘𝑌)) → 𝑛 ∈ ℕ0)
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → 𝑛 ∈ ℕ0)
103 nn0p1nn 12548 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (𝑛 + 1) ∈ ℕ)
105104nnrecred 12299 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (1 / (𝑛 + 1)) ∈ ℝ)
106100, 105fsumrecl 15752 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ∈ ℝ)
107106, 90readdcld 11272 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
108 readdcl 11220 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 + (log‘𝑌)) ∈ ℝ)
1092, 94, 108sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 + (log‘𝑌)) ∈ ℝ)
110109, 90readdcld 11272 . . . . . . . . . . . 12 (𝜑 → ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
11141, 65remulcld 11273 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
11265recnd 11271 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℂ)
113112mullidd 11261 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) = 𝑌)
11444, 41, 50ltled 11391 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
115 lemul1 12101 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
11644, 41, 65, 79, 115syl112anc 1375 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
117114, 116mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) ≤ (𝐾 · 𝑌))
118113, 117eqbrtrrd 5147 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ≤ (𝐾 · 𝑌))
11942, 65, 111, 80, 118letrd 11400 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐾 · 𝑌))
120 flge0nn0 13842 . . . . . . . . . . . . . . . . . 18 (((𝐾 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
121111, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
122 nn0p1nn 12548 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝐾 · 𝑌)) ∈ ℕ0 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
123121, 122syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
124123nnrpd 13057 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℝ+)
125124relogcld 26601 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ∈ ℝ)
126 1zzd 12631 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
127111flcld 13820 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
128127peano2zd 12708 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℤ)
129 elfznn 13575 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1)) → 𝑘 ∈ ℕ)
130129adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → 𝑘 ∈ ℕ)
131 nnrecre 12290 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
132131recnd 11271 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
133130, 132syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → (1 / 𝑘) ∈ ℂ)
134 oveq2 7421 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (1 / 𝑘) = (1 / (𝑛 + 1)))
135126, 126, 128, 133, 134fsumshftm 15799 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)))
136 1m1e0 12320 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
137136a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 − 1) = 0)
138127zcnd 12706 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℂ)
139 ax-1cn 11195 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
140 pncan 11496 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(𝐾 · 𝑌)) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
141138, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
142137, 141oveq12d 7431 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1)) = (0...(⌊‘(𝐾 · 𝑌))))
143142sumeq1d 15718 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
144 reflcl 13818 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
14565, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ∈ ℝ)
146145ltp1d 12180 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
147 fzdisj 13573 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) < ((⌊‘𝑌) + 1) → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
149 flwordi 13834 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
15065, 111, 118, 149syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
151 elfz2nn0 13640 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘𝑌) ∈ ℕ0 ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℕ0 ∧ (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌))))
15282, 121, 150, 151syl3anbrc 1343 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))))
153 fzsplit 13572 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
154152, 153syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
155 fzfid 13996 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
156 elfznn0 13642 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ ℕ0)
157156adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ0)
158157, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
159158nnrecred 12299 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
160159recnd 11271 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
161148, 154, 155, 160fsumsplit 15759 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
162135, 143, 1613eqtrd 2773 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
163162, 107eqeltrd 2833 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) ∈ ℝ)
164 fllep1 13823 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑌) ∈ ℝ → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
165111, 164syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
16652, 93rpmulcld 13075 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · 𝑌) ∈ ℝ+)
167166, 124logled 26605 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1) ↔ (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
168165, 167mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1)))
169 emre 26985 . . . . . . . . . . . . . . . . 17 γ ∈ ℝ
170169a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → γ ∈ ℝ)
171163, 125resubcld 11673 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ)
172 0re 11245 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
173 emgt0 26986 . . . . . . . . . . . . . . . . . 18 0 < γ
174172, 169, 173ltleii 11366 . . . . . . . . . . . . . . . . 17 0 ≤ γ
175174a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ γ)
176 harmonicbnd 26983 . . . . . . . . . . . . . . . . . 18 (((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
177123, 176syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
178169, 43elicc2i 13435 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ≤ 1))
179178simp2bi 1146 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
180177, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
18142, 170, 171, 175, 180letrd 11400 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
182163, 125subge0d 11835 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ↔ (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘)))
183181, 182mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
18499, 125, 163, 168, 183letrd 11400 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
185184, 162breqtrd 5149 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
18665flcld 13820 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
187186peano2zd 12708 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
188 elfznn 13575 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...((⌊‘𝑌) + 1)) → 𝑘 ∈ ℕ)
189188adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → 𝑘 ∈ ℕ)
190189, 132syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → (1 / 𝑘) ∈ ℂ)
191126, 126, 187, 190, 134fsumshftm 15799 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)))
192145recnd 11271 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ ℂ)
193 pncan 11496 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
194192, 139, 193sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
195137, 194oveq12d 7431 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1)...(((⌊‘𝑌) + 1) − 1)) = (0...(⌊‘𝑌)))
196195sumeq1d 15718 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
197191, 196eqtrd 2769 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
198197, 106eqeltrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ∈ ℝ)
19984nnrpd 13057 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
200199relogcld 26601 . . . . . . . . . . . . . . . 16 (𝜑 → (log‘((⌊‘𝑌) + 1)) ∈ ℝ)
201 readdcl 11220 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (log‘((⌊‘𝑌) + 1)) ∈ ℝ) → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
20243, 200, 201sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
203 harmonicbnd 26983 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
20484, 203syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
205169, 43elicc2i 13435 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1))
206205simp3bi 1147 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
207204, 206syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
208198, 200, 44lesubaddd 11842 . . . . . . . . . . . . . . . 16 (𝜑 → ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1 ↔ Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1)))))
209207, 208mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1))))
210 readdcl 11220 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (1 + (log‘𝑌)) ∈ ℝ)
21143, 94, 210sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (log‘𝑌)) ∈ ℝ)
212 peano2re 11416 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
213145, 212syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ)
2143, 65remulcld 11273 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ∈ ℝ)
215 epr 16226 . . . . . . . . . . . . . . . . . . . . . 22 e ∈ ℝ+
216 rpmulcl 13040 . . . . . . . . . . . . . . . . . . . . . 22 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (e · 𝑌) ∈ ℝ+)
217215, 93, 216sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (e · 𝑌) ∈ ℝ+)
218217rpred 13059 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (e · 𝑌) ∈ ℝ)
219 flle 13821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
22065, 219syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (⌊‘𝑌) ≤ 𝑌)
22112, 10rpdivcld 13076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (2 / 𝐸) ∈ ℝ+)
222 efgt1 16134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 / 𝐸) ∈ ℝ+ → 1 < (exp‘(2 / 𝐸)))
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 < (exp‘(2 / 𝐸)))
224223, 66breqtrrdi 5165 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑋)
22544, 70, 65, 224, 78lttrd 11404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑌)
22644, 65, 225ltled 11391 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≤ 𝑌)
227145, 44, 65, 65, 220, 226le2addd 11864 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((⌊‘𝑌) + 1) ≤ (𝑌 + 𝑌))
2281122timesd 12492 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑌) = (𝑌 + 𝑌))
229227, 228breqtrrd 5151 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ≤ (2 · 𝑌))
230 ere 16107 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ
231 egt2lt3 16224 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
232231simpli 483 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
2332, 230, 232ltleii 11366 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ e
234233a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ e)
235230a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → e ∈ ℝ)
236 lemul1 12101 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
2373, 235, 65, 79, 236syl112anc 1375 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
238234, 237mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ≤ (e · 𝑌))
239213, 214, 218, 229, 238letrd 11400 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘𝑌) + 1) ≤ (e · 𝑌))
240199, 217logled 26605 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((⌊‘𝑌) + 1) ≤ (e · 𝑌) ↔ (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌))))
241239, 240mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌)))
242 relogmul 26570 . . . . . . . . . . . . . . . . . . . 20 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
243215, 93, 242sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
244 loge 26564 . . . . . . . . . . . . . . . . . . . 20 (log‘e) = 1
245244oveq1i 7423 . . . . . . . . . . . . . . . . . . 19 ((log‘e) + (log‘𝑌)) = (1 + (log‘𝑌))
246243, 245eqtrdi 2785 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘(e · 𝑌)) = (1 + (log‘𝑌)))
247241, 246breqtrd 5149 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (1 + (log‘𝑌)))
248200, 211, 44, 247leadd2dd 11860 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (1 + (1 + (log‘𝑌))))
249 df-2 12311 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
250249oveq1i 7423 . . . . . . . . . . . . . . . . 17 (2 + (log‘𝑌)) = ((1 + 1) + (log‘𝑌))
251139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
252251, 251, 95addassd 11265 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
253250, 252eqtrid 2781 . . . . . . . . . . . . . . . 16 (𝜑 → (2 + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
254248, 253breqtrrd 5151 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (2 + (log‘𝑌)))
255198, 202, 109, 209, 254letrd 11400 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (2 + (log‘𝑌)))
256197, 255eqbrtrrd 5147 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ≤ (2 + (log‘𝑌)))
257106, 109, 90, 256leadd1dd 11859 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25899, 107, 110, 185, 257letrd 11400 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25997, 258eqbrtrrd 5147 . . . . . . . . . 10 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
26098, 109, 90lesubadd2d 11844 . . . . . . . . . 10 (𝜑 → ((((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ↔ ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))))
261259, 260mpbird 257 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26296, 261eqbrtrrd 5147 . . . . . . . 8 (𝜑 → ((log‘𝐾) − 2) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26389recnd 11271 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
26462, 26, 263fsummulc2 15802 . . . . . . . . . 10 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))))
2656adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℝ)
266265recnd 11271 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℂ)
26788nncnd 12264 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℂ)
26888nnne0d 12298 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ≠ 0)
269266, 267, 268divrecd 12028 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) = (𝐸 · (1 / (𝑛 + 1))))
270265, 88nndivred 12302 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ∈ ℝ)
271269, 270eqeltrrd 2834 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27262, 271fsumrecl 15752 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27387nnrpd 13057 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
274 pntpbnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
275274pntrf 27543 . . . . . . . . . . . . . . . . 17 𝑅:ℝ+⟶ℝ
276275ffvelcdmi 7083 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
277273, 276syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
27887, 88nnmulcld 12301 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
279277, 278nndivred 12302 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
280279recnd 11271 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
281280abscld 15457 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28262, 281fsumrecl 15752 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
283277, 87nndivred 12302 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℝ)
284283recnd 11271 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℂ)
285284abscld 15457 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / 𝑛)) ∈ ℝ)
28688nnrpd 13057 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℝ+)
287 pntpbnd1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
288287adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
289 elfzle1 13549 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
290289adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
29165adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 ∈ ℝ)
292291flcld 13820 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) ∈ ℤ)
29387nnzd 12623 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℤ)
294 zltp1le 12650 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑌) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
295292, 293, 294syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
296290, 295mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑛)
297 fllt 13828 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
298291, 293, 297syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
299296, 298mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑛)
300 elfzle2 13550 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
301300adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
302111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐾 · 𝑌) ∈ ℝ)
303 flge 13827 . . . . . . . . . . . . . . . . . . 19 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
304302, 293, 303syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
305301, 304mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (𝐾 · 𝑌))
306 breq2 5127 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑌 < 𝑦𝑌 < 𝑛))
307 breq1 5126 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (𝐾 · 𝑌)))
308306, 307anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))))
309 fveq2 6886 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
310 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛𝑦 = 𝑛)
311309, 310oveq12d 7431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑛 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑛) / 𝑛))
312311fveq2d 6890 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑛) / 𝑛)))
313312breq1d 5133 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸))
314308, 313anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)))
315314rspcev 3605 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
316315expr 456 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
31787, 299, 305, 316syl12anc 836 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
318288, 317mtod 198 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)
319285, 265letrid 11395 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
320319ord 864 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
321318, 320mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛)))
322265, 285, 286, 321lediv1dd 13117 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ≤ ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
323284, 267, 268absdivd 15476 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))))
324277recnd 11271 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
32587nncnd 12264 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℂ)
32687nnne0d 12298 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≠ 0)
327324, 325, 267, 326, 268divdiv1d 12056 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / 𝑛) / (𝑛 + 1)) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
328327fveq2d 6890 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
329286rprege0d 13066 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)))
330 absid 15317 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
331329, 330syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
332331oveq2d 7429 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
333323, 328, 3323eqtr3rd 2778 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
334322, 269, 3333brtr3d 5154 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
33562, 271, 281, 334fsumle 15817 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336 pntpbnd1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
337274, 5, 66, 64, 15, 336, 13, 36, 287pntpbnd1 27566 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
338272, 282, 32, 335, 337letrd 11400 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ 𝐴)
339264, 338eqbrtrd 5145 . . . . . . . . 9 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴)
34090, 32, 10lemuldiv2d 13109 . . . . . . . . 9 (𝜑 → ((𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴 ↔ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸)))
341339, 340mpbid 232 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸))
34255, 90, 33, 262, 341letrd 11400 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ≤ (𝐴 / 𝐸))
34335, 55, 33, 61, 342letrd 11400 . . . . . 6 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ (𝐴 / 𝐸))
34431, 3, 33, 343subled 11848 . . . . 5 (𝜑 → ((𝐶 / 𝐸) − (𝐴 / 𝐸)) ≤ 2)
34529, 344eqbrtrd 5145 . . . 4 (𝜑 → (2 / 𝐸) ≤ 2)
3463, 10, 12, 345lediv23d 13127 . . 3 (𝜑 → (2 / 2) ≤ 𝐸)
3471, 346eqbrtrrid 5159 . 2 (𝜑 → 1 ≤ 𝐸)
3488simprd 495 . . 3 (𝜑𝐸 < 1)
349 ltnle 11322 . . . 4 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
3506, 43, 349sylancl 586 . . 3 (𝜑 → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
351348, 350mpbid 232 . 2 (𝜑 → ¬ 1 ≤ 𝐸)
352347, 351pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  cun 3929  cin 3930  c0 4313   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  +∞cpnf 11274  *cxr 11276   < clt 11277  cle 11278  cmin 11474   / cdiv 11902  cn 12248  2c2 12303  3c3 12304  0cn0 12509  cz 12596  cuz 12860  +crp 13016  (,)cioo 13369  [,)cico 13371  [,]cicc 13372  ...cfz 13529  cfl 13812  abscabs 15255  Σcsu 15704  expce 16079  eceu 16080  logclog 26532  γcem 26971  ψcchp 27072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-e 16086  df-sin 16087  df-cos 16088  df-tan 16089  df-pi 16090  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838  df-ulm 26356  df-log 26534  df-atan 26846  df-em 26972  df-vma 27077  df-chp 27078
This theorem is referenced by:  pntpbnd  27568
  Copyright terms: Public domain W3C validator