MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd2 Structured version   Visualization version   GIF version

Theorem pntpbnd2 27555
Description: Lemma for pntpbnd 27556. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd2 ¬ 𝜑
Distinct variable groups:   𝑖,𝑗,𝑦,𝐾   𝑅,𝑖,𝑗,𝑦   𝑖,𝑎,𝑗,𝑦,𝐴   𝑦,𝐸   𝑖,𝑌,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2div2e1 12386 . . 3 (2 / 2) = 1
2 2re 12319 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
4 ioossre 13429 . . . . . 6 (0(,)1) ⊆ ℝ
5 pntpbnd1.e . . . . . 6 (𝜑𝐸 ∈ (0(,)1))
64, 5sselid 3961 . . . . 5 (𝜑𝐸 ∈ ℝ)
7 eliooord 13427 . . . . . . 7 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
85, 7syl 17 . . . . . 6 (𝜑 → (0 < 𝐸𝐸 < 1))
98simpld 494 . . . . 5 (𝜑 → 0 < 𝐸)
106, 9elrpd 13053 . . . 4 (𝜑𝐸 ∈ ℝ+)
11 2rp 13018 . . . . 5 2 ∈ ℝ+
1211a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
13 pntpbnd1.c . . . . . . . . 9 𝐶 = (𝐴 + 2)
1413oveq1i 7420 . . . . . . . 8 (𝐶𝐴) = ((𝐴 + 2) − 𝐴)
15 pntpbnd1.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
1615rpcnd 13058 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
17 2cn 12320 . . . . . . . . 9 2 ∈ ℂ
18 pncan2 11494 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 2) − 𝐴) = 2)
1916, 17, 18sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 + 2) − 𝐴) = 2)
2014, 19eqtrid 2783 . . . . . . 7 (𝜑 → (𝐶𝐴) = 2)
2120oveq1d 7425 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = (2 / 𝐸))
22 rpaddcl 13036 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
2315, 11, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 + 2) ∈ ℝ+)
2413, 23eqeltrid 2839 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
2524rpcnd 13058 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
266recnd 11268 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
2710rpne0d 13061 . . . . . . 7 (𝜑𝐸 ≠ 0)
2825, 16, 26, 27divsubdird 12061 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
2921, 28eqtr3d 2773 . . . . 5 (𝜑 → (2 / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
3024, 10rpdivcld 13073 . . . . . . 7 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
3130rpred 13056 . . . . . 6 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3215rpred 13056 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3332, 10rerpdivcld 13087 . . . . . 6 (𝜑 → (𝐴 / 𝐸) ∈ ℝ)
34 resubcl 11552 . . . . . . . 8 (((𝐶 / 𝐸) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 / 𝐸) − 2) ∈ ℝ)
3531, 2, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ∈ ℝ)
36 pntpbnd1.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
3731reefcld 16109 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 elicopnf 13467 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
4036, 39mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾))
4140simpld 494 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
42 0red 11243 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
43 1re 11240 . . . . . . . . . . . 12 1 ∈ ℝ
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
45 0lt1 11764 . . . . . . . . . . . 12 0 < 1
4645a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
47 efgt1 16139 . . . . . . . . . . . . 13 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
4830, 47syl 17 . . . . . . . . . . . 12 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
4940simprd 495 . . . . . . . . . . . 12 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
5044, 37, 41, 48, 49ltletrd 11400 . . . . . . . . . . 11 (𝜑 → 1 < 𝐾)
5142, 44, 41, 46, 50lttrd 11401 . . . . . . . . . 10 (𝜑 → 0 < 𝐾)
5241, 51elrpd 13053 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
5352relogcld 26589 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ)
54 resubcl 11552 . . . . . . . 8 (((log‘𝐾) ∈ ℝ ∧ 2 ∈ ℝ) → ((log‘𝐾) − 2) ∈ ℝ)
5553, 2, 54sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ∈ ℝ)
5652reeflogd 26590 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐾)) = 𝐾)
5749, 56breqtrrd 5152 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾)))
58 efle 16141 . . . . . . . . . 10 (((𝐶 / 𝐸) ∈ ℝ ∧ (log‘𝐾) ∈ ℝ) → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
5931, 53, 58syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
6057, 59mpbird 257 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ≤ (log‘𝐾))
6131, 53, 3, 60lesub1dd 11858 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ ((log‘𝐾) − 2))
62 fzfid 13996 . . . . . . . . 9 (𝜑 → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
63 ioossre 13429 . . . . . . . . . . . . . . 15 (𝑋(,)+∞) ⊆ ℝ
64 pntpbnd1.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑋(,)+∞))
6563, 64sselid 3961 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
66 pntpbnd1.x . . . . . . . . . . . . . . . . 17 𝑋 = (exp‘(2 / 𝐸))
67 rerpdivcl 13044 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
682, 10, 67sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 / 𝐸) ∈ ℝ)
6968reefcld 16109 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
7066, 69eqeltrid 2839 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
71 efgt0 16126 . . . . . . . . . . . . . . . . . 18 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
7268, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < (exp‘(2 / 𝐸)))
7372, 66breqtrrdi 5166 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑋)
7470rexrd 11290 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ*)
75 elioopnf 13465 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7764, 76mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
7877simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑋 < 𝑌)
7942, 70, 65, 73, 78lttrd 11401 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑌)
8042, 65, 79ltled 11388 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑌)
81 flge0nn0 13842 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
8265, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
83 nn0p1nn 12545 . . . . . . . . . . . . 13 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
85 elfzuz 13542 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
86 eluznn 12939 . . . . . . . . . . . 12 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
8784, 85, 86syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
8887peano2nnd 12262 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
8988nnrecred 12296 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
9062, 89fsumrecl 15755 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ∈ ℝ)
9153recnd 11268 . . . . . . . . . 10 (𝜑 → (log‘𝐾) ∈ ℂ)
92 2cnd 12323 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
9365, 79elrpd 13053 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
9493relogcld 26589 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ∈ ℝ)
9594recnd 11268 . . . . . . . . . 10 (𝜑 → (log‘𝑌) ∈ ℂ)
9691, 92, 95pnpcan2d 11637 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) = ((log‘𝐾) − 2))
9752, 93relogmuld 26591 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) = ((log‘𝐾) + (log‘𝑌)))
9853, 94readdcld 11269 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ∈ ℝ)
9997, 98eqeltrd 2835 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ∈ ℝ)
100 fzfid 13996 . . . . . . . . . . . . . 14 (𝜑 → (0...(⌊‘𝑌)) ∈ Fin)
101 elfznn0 13642 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...(⌊‘𝑌)) → 𝑛 ∈ ℕ0)
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → 𝑛 ∈ ℕ0)
103 nn0p1nn 12545 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (𝑛 + 1) ∈ ℕ)
105104nnrecred 12296 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (1 / (𝑛 + 1)) ∈ ℝ)
106100, 105fsumrecl 15755 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ∈ ℝ)
107106, 90readdcld 11269 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
108 readdcl 11217 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 + (log‘𝑌)) ∈ ℝ)
1092, 94, 108sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 + (log‘𝑌)) ∈ ℝ)
110109, 90readdcld 11269 . . . . . . . . . . . 12 (𝜑 → ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
11141, 65remulcld 11270 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
11265recnd 11268 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℂ)
113112mullidd 11258 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) = 𝑌)
11444, 41, 50ltled 11388 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
115 lemul1 12098 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
11644, 41, 65, 79, 115syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
117114, 116mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) ≤ (𝐾 · 𝑌))
118113, 117eqbrtrrd 5148 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ≤ (𝐾 · 𝑌))
11942, 65, 111, 80, 118letrd 11397 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐾 · 𝑌))
120 flge0nn0 13842 . . . . . . . . . . . . . . . . . 18 (((𝐾 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
121111, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
122 nn0p1nn 12545 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝐾 · 𝑌)) ∈ ℕ0 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
123121, 122syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
124123nnrpd 13054 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℝ+)
125124relogcld 26589 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ∈ ℝ)
126 1zzd 12628 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
127111flcld 13820 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
128127peano2zd 12705 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℤ)
129 elfznn 13575 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1)) → 𝑘 ∈ ℕ)
130129adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → 𝑘 ∈ ℕ)
131 nnrecre 12287 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
132131recnd 11268 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
133130, 132syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → (1 / 𝑘) ∈ ℂ)
134 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (1 / 𝑘) = (1 / (𝑛 + 1)))
135126, 126, 128, 133, 134fsumshftm 15802 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)))
136 1m1e0 12317 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
137136a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 − 1) = 0)
138127zcnd 12703 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℂ)
139 ax-1cn 11192 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
140 pncan 11493 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(𝐾 · 𝑌)) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
141138, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
142137, 141oveq12d 7428 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1)) = (0...(⌊‘(𝐾 · 𝑌))))
143142sumeq1d 15721 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
144 reflcl 13818 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
14565, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ∈ ℝ)
146145ltp1d 12177 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
147 fzdisj 13573 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) < ((⌊‘𝑌) + 1) → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
149 flwordi 13834 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
15065, 111, 118, 149syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
151 elfz2nn0 13640 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘𝑌) ∈ ℕ0 ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℕ0 ∧ (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌))))
15282, 121, 150, 151syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))))
153 fzsplit 13572 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
154152, 153syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
155 fzfid 13996 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
156 elfznn0 13642 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ ℕ0)
157156adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ0)
158157, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
159158nnrecred 12296 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
160159recnd 11268 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
161148, 154, 155, 160fsumsplit 15762 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
162135, 143, 1613eqtrd 2775 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
163162, 107eqeltrd 2835 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) ∈ ℝ)
164 fllep1 13823 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑌) ∈ ℝ → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
165111, 164syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
16652, 93rpmulcld 13072 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · 𝑌) ∈ ℝ+)
167166, 124logled 26593 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1) ↔ (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
168165, 167mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1)))
169 emre 26973 . . . . . . . . . . . . . . . . 17 γ ∈ ℝ
170169a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → γ ∈ ℝ)
171163, 125resubcld 11670 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ)
172 0re 11242 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
173 emgt0 26974 . . . . . . . . . . . . . . . . . 18 0 < γ
174172, 169, 173ltleii 11363 . . . . . . . . . . . . . . . . 17 0 ≤ γ
175174a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ γ)
176 harmonicbnd 26971 . . . . . . . . . . . . . . . . . 18 (((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
177123, 176syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
178169, 43elicc2i 13434 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ≤ 1))
179178simp2bi 1146 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
180177, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
18142, 170, 171, 175, 180letrd 11397 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
182163, 125subge0d 11832 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ↔ (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘)))
183181, 182mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
18499, 125, 163, 168, 183letrd 11397 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
185184, 162breqtrd 5150 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
18665flcld 13820 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
187186peano2zd 12705 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
188 elfznn 13575 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...((⌊‘𝑌) + 1)) → 𝑘 ∈ ℕ)
189188adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → 𝑘 ∈ ℕ)
190189, 132syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → (1 / 𝑘) ∈ ℂ)
191126, 126, 187, 190, 134fsumshftm 15802 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)))
192145recnd 11268 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ ℂ)
193 pncan 11493 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
194192, 139, 193sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
195137, 194oveq12d 7428 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1)...(((⌊‘𝑌) + 1) − 1)) = (0...(⌊‘𝑌)))
196195sumeq1d 15721 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
197191, 196eqtrd 2771 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
198197, 106eqeltrd 2835 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ∈ ℝ)
19984nnrpd 13054 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
200199relogcld 26589 . . . . . . . . . . . . . . . 16 (𝜑 → (log‘((⌊‘𝑌) + 1)) ∈ ℝ)
201 readdcl 11217 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (log‘((⌊‘𝑌) + 1)) ∈ ℝ) → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
20243, 200, 201sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
203 harmonicbnd 26971 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
20484, 203syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
205169, 43elicc2i 13434 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1))
206205simp3bi 1147 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
207204, 206syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
208198, 200, 44lesubaddd 11839 . . . . . . . . . . . . . . . 16 (𝜑 → ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1 ↔ Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1)))))
209207, 208mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1))))
210 readdcl 11217 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (1 + (log‘𝑌)) ∈ ℝ)
21143, 94, 210sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (log‘𝑌)) ∈ ℝ)
212 peano2re 11413 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
213145, 212syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ)
2143, 65remulcld 11270 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ∈ ℝ)
215 epr 16231 . . . . . . . . . . . . . . . . . . . . . 22 e ∈ ℝ+
216 rpmulcl 13037 . . . . . . . . . . . . . . . . . . . . . 22 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (e · 𝑌) ∈ ℝ+)
217215, 93, 216sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (e · 𝑌) ∈ ℝ+)
218217rpred 13056 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (e · 𝑌) ∈ ℝ)
219 flle 13821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
22065, 219syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (⌊‘𝑌) ≤ 𝑌)
22112, 10rpdivcld 13073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (2 / 𝐸) ∈ ℝ+)
222 efgt1 16139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 / 𝐸) ∈ ℝ+ → 1 < (exp‘(2 / 𝐸)))
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 < (exp‘(2 / 𝐸)))
224223, 66breqtrrdi 5166 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑋)
22544, 70, 65, 224, 78lttrd 11401 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑌)
22644, 65, 225ltled 11388 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≤ 𝑌)
227145, 44, 65, 65, 220, 226le2addd 11861 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((⌊‘𝑌) + 1) ≤ (𝑌 + 𝑌))
2281122timesd 12489 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑌) = (𝑌 + 𝑌))
229227, 228breqtrrd 5152 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ≤ (2 · 𝑌))
230 ere 16110 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ
231 egt2lt3 16229 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
232231simpli 483 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
2332, 230, 232ltleii 11363 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ e
234233a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ e)
235230a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → e ∈ ℝ)
236 lemul1 12098 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
2373, 235, 65, 79, 236syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
238234, 237mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ≤ (e · 𝑌))
239213, 214, 218, 229, 238letrd 11397 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘𝑌) + 1) ≤ (e · 𝑌))
240199, 217logled 26593 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((⌊‘𝑌) + 1) ≤ (e · 𝑌) ↔ (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌))))
241239, 240mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌)))
242 relogmul 26558 . . . . . . . . . . . . . . . . . . . 20 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
243215, 93, 242sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
244 loge 26552 . . . . . . . . . . . . . . . . . . . 20 (log‘e) = 1
245244oveq1i 7420 . . . . . . . . . . . . . . . . . . 19 ((log‘e) + (log‘𝑌)) = (1 + (log‘𝑌))
246243, 245eqtrdi 2787 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘(e · 𝑌)) = (1 + (log‘𝑌)))
247241, 246breqtrd 5150 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (1 + (log‘𝑌)))
248200, 211, 44, 247leadd2dd 11857 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (1 + (1 + (log‘𝑌))))
249 df-2 12308 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
250249oveq1i 7420 . . . . . . . . . . . . . . . . 17 (2 + (log‘𝑌)) = ((1 + 1) + (log‘𝑌))
251139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
252251, 251, 95addassd 11262 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
253250, 252eqtrid 2783 . . . . . . . . . . . . . . . 16 (𝜑 → (2 + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
254248, 253breqtrrd 5152 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (2 + (log‘𝑌)))
255198, 202, 109, 209, 254letrd 11397 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (2 + (log‘𝑌)))
256197, 255eqbrtrrd 5148 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ≤ (2 + (log‘𝑌)))
257106, 109, 90, 256leadd1dd 11856 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25899, 107, 110, 185, 257letrd 11397 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25997, 258eqbrtrrd 5148 . . . . . . . . . 10 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
26098, 109, 90lesubadd2d 11841 . . . . . . . . . 10 (𝜑 → ((((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ↔ ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))))
261259, 260mpbird 257 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26296, 261eqbrtrrd 5148 . . . . . . . 8 (𝜑 → ((log‘𝐾) − 2) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26389recnd 11268 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
26462, 26, 263fsummulc2 15805 . . . . . . . . . 10 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))))
2656adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℝ)
266265recnd 11268 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℂ)
26788nncnd 12261 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℂ)
26888nnne0d 12295 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ≠ 0)
269266, 267, 268divrecd 12025 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) = (𝐸 · (1 / (𝑛 + 1))))
270265, 88nndivred 12299 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ∈ ℝ)
271269, 270eqeltrrd 2836 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27262, 271fsumrecl 15755 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27387nnrpd 13054 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
274 pntpbnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
275274pntrf 27531 . . . . . . . . . . . . . . . . 17 𝑅:ℝ+⟶ℝ
276275ffvelcdmi 7078 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
277273, 276syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
27887, 88nnmulcld 12298 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
279277, 278nndivred 12299 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
280279recnd 11268 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
281280abscld 15460 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28262, 281fsumrecl 15755 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
283277, 87nndivred 12299 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℝ)
284283recnd 11268 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℂ)
285284abscld 15460 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / 𝑛)) ∈ ℝ)
28688nnrpd 13054 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℝ+)
287 pntpbnd1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
288287adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
289 elfzle1 13549 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
290289adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
29165adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 ∈ ℝ)
292291flcld 13820 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) ∈ ℤ)
29387nnzd 12620 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℤ)
294 zltp1le 12647 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑌) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
295292, 293, 294syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
296290, 295mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑛)
297 fllt 13828 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
298291, 293, 297syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
299296, 298mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑛)
300 elfzle2 13550 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
301300adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
302111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐾 · 𝑌) ∈ ℝ)
303 flge 13827 . . . . . . . . . . . . . . . . . . 19 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
304302, 293, 303syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
305301, 304mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (𝐾 · 𝑌))
306 breq2 5128 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑌 < 𝑦𝑌 < 𝑛))
307 breq1 5127 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (𝐾 · 𝑌)))
308306, 307anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))))
309 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
310 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛𝑦 = 𝑛)
311309, 310oveq12d 7428 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑛 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑛) / 𝑛))
312311fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑛) / 𝑛)))
313312breq1d 5134 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸))
314308, 313anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)))
315314rspcev 3606 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
316315expr 456 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
31787, 299, 305, 316syl12anc 836 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
318288, 317mtod 198 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)
319285, 265letrid 11392 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
320319ord 864 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
321318, 320mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛)))
322265, 285, 286, 321lediv1dd 13114 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ≤ ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
323284, 267, 268absdivd 15479 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))))
324277recnd 11268 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
32587nncnd 12261 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℂ)
32687nnne0d 12295 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≠ 0)
327324, 325, 267, 326, 268divdiv1d 12053 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / 𝑛) / (𝑛 + 1)) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
328327fveq2d 6885 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
329286rprege0d 13063 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)))
330 absid 15320 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
331329, 330syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
332331oveq2d 7426 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
333323, 328, 3323eqtr3rd 2780 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
334322, 269, 3333brtr3d 5155 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
33562, 271, 281, 334fsumle 15820 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336 pntpbnd1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
337274, 5, 66, 64, 15, 336, 13, 36, 287pntpbnd1 27554 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
338272, 282, 32, 335, 337letrd 11397 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ 𝐴)
339264, 338eqbrtrd 5146 . . . . . . . . 9 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴)
34090, 32, 10lemuldiv2d 13106 . . . . . . . . 9 (𝜑 → ((𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴 ↔ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸)))
341339, 340mpbid 232 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸))
34255, 90, 33, 262, 341letrd 11397 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ≤ (𝐴 / 𝐸))
34335, 55, 33, 61, 342letrd 11397 . . . . . 6 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ (𝐴 / 𝐸))
34431, 3, 33, 343subled 11845 . . . . 5 (𝜑 → ((𝐶 / 𝐸) − (𝐴 / 𝐸)) ≤ 2)
34529, 344eqbrtrd 5146 . . . 4 (𝜑 → (2 / 𝐸) ≤ 2)
3463, 10, 12, 345lediv23d 13124 . . 3 (𝜑 → (2 / 2) ≤ 𝐸)
3471, 346eqbrtrrid 5160 . 2 (𝜑 → 1 ≤ 𝐸)
3488simprd 495 . . 3 (𝜑𝐸 < 1)
349 ltnle 11319 . . . 4 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
3506, 43, 349sylancl 586 . . 3 (𝜑 → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
351348, 350mpbid 232 . 2 (𝜑 → ¬ 1 ≤ 𝐸)
352347, 351pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cun 3929  cin 3930  c0 4313   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  0cn0 12506  cz 12593  cuz 12857  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  ...cfz 13529  cfl 13812  abscabs 15258  Σcsu 15707  expce 16082  eceu 16083  logclog 26520  γcem 26959  ψcchp 27060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-tan 16092  df-pi 16093  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-ulm 26343  df-log 26522  df-atan 26834  df-em 26960  df-vma 27065  df-chp 27066
This theorem is referenced by:  pntpbnd  27556
  Copyright terms: Public domain W3C validator