MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd2 Structured version   Visualization version   GIF version

Theorem pntpbnd2 26935
Description: Lemma for pntpbnd 26936. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd2 ¬ 𝜑
Distinct variable groups:   𝑖,𝑗,𝑦,𝐾   𝑅,𝑖,𝑗,𝑦   𝑖,𝑎,𝑗,𝑦,𝐴   𝑦,𝐸   𝑖,𝑌,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2div2e1 12294 . . 3 (2 / 2) = 1
2 2re 12227 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
4 ioossre 13325 . . . . . 6 (0(,)1) ⊆ ℝ
5 pntpbnd1.e . . . . . 6 (𝜑𝐸 ∈ (0(,)1))
64, 5sselid 3942 . . . . 5 (𝜑𝐸 ∈ ℝ)
7 eliooord 13323 . . . . . . 7 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
85, 7syl 17 . . . . . 6 (𝜑 → (0 < 𝐸𝐸 < 1))
98simpld 495 . . . . 5 (𝜑 → 0 < 𝐸)
106, 9elrpd 12954 . . . 4 (𝜑𝐸 ∈ ℝ+)
11 2rp 12920 . . . . 5 2 ∈ ℝ+
1211a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
13 pntpbnd1.c . . . . . . . . 9 𝐶 = (𝐴 + 2)
1413oveq1i 7367 . . . . . . . 8 (𝐶𝐴) = ((𝐴 + 2) − 𝐴)
15 pntpbnd1.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
1615rpcnd 12959 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
17 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
18 pncan2 11408 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 2) − 𝐴) = 2)
1916, 17, 18sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 + 2) − 𝐴) = 2)
2014, 19eqtrid 2788 . . . . . . 7 (𝜑 → (𝐶𝐴) = 2)
2120oveq1d 7372 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = (2 / 𝐸))
22 rpaddcl 12937 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
2315, 11, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 + 2) ∈ ℝ+)
2413, 23eqeltrid 2842 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
2524rpcnd 12959 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
266recnd 11183 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
2710rpne0d 12962 . . . . . . 7 (𝜑𝐸 ≠ 0)
2825, 16, 26, 27divsubdird 11970 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
2921, 28eqtr3d 2778 . . . . 5 (𝜑 → (2 / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
3024, 10rpdivcld 12974 . . . . . . 7 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
3130rpred 12957 . . . . . 6 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3215rpred 12957 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3332, 10rerpdivcld 12988 . . . . . 6 (𝜑 → (𝐴 / 𝐸) ∈ ℝ)
34 resubcl 11465 . . . . . . . 8 (((𝐶 / 𝐸) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 / 𝐸) − 2) ∈ ℝ)
3531, 2, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ∈ ℝ)
36 pntpbnd1.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
3731reefcld 15970 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 elicopnf 13362 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
4036, 39mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾))
4140simpld 495 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
42 0red 11158 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
43 1re 11155 . . . . . . . . . . . 12 1 ∈ ℝ
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
45 0lt1 11677 . . . . . . . . . . . 12 0 < 1
4645a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
47 efgt1 15998 . . . . . . . . . . . . 13 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
4830, 47syl 17 . . . . . . . . . . . 12 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
4940simprd 496 . . . . . . . . . . . 12 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
5044, 37, 41, 48, 49ltletrd 11315 . . . . . . . . . . 11 (𝜑 → 1 < 𝐾)
5142, 44, 41, 46, 50lttrd 11316 . . . . . . . . . 10 (𝜑 → 0 < 𝐾)
5241, 51elrpd 12954 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
5352relogcld 25978 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ)
54 resubcl 11465 . . . . . . . 8 (((log‘𝐾) ∈ ℝ ∧ 2 ∈ ℝ) → ((log‘𝐾) − 2) ∈ ℝ)
5553, 2, 54sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ∈ ℝ)
5652reeflogd 25979 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐾)) = 𝐾)
5749, 56breqtrrd 5133 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾)))
58 efle 16000 . . . . . . . . . 10 (((𝐶 / 𝐸) ∈ ℝ ∧ (log‘𝐾) ∈ ℝ) → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
5931, 53, 58syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
6057, 59mpbird 256 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ≤ (log‘𝐾))
6131, 53, 3, 60lesub1dd 11771 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ ((log‘𝐾) − 2))
62 fzfid 13878 . . . . . . . . 9 (𝜑 → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
63 ioossre 13325 . . . . . . . . . . . . . . 15 (𝑋(,)+∞) ⊆ ℝ
64 pntpbnd1.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑋(,)+∞))
6563, 64sselid 3942 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
66 pntpbnd1.x . . . . . . . . . . . . . . . . 17 𝑋 = (exp‘(2 / 𝐸))
67 rerpdivcl 12945 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
682, 10, 67sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 / 𝐸) ∈ ℝ)
6968reefcld 15970 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
7066, 69eqeltrid 2842 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
71 efgt0 15985 . . . . . . . . . . . . . . . . . 18 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
7268, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < (exp‘(2 / 𝐸)))
7372, 66breqtrrdi 5147 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑋)
7470rexrd 11205 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ*)
75 elioopnf 13360 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7764, 76mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
7877simprd 496 . . . . . . . . . . . . . . . 16 (𝜑𝑋 < 𝑌)
7942, 70, 65, 73, 78lttrd 11316 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑌)
8042, 65, 79ltled 11303 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑌)
81 flge0nn0 13725 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
8265, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
83 nn0p1nn 12452 . . . . . . . . . . . . 13 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
85 elfzuz 13437 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
86 eluznn 12843 . . . . . . . . . . . 12 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
8784, 85, 86syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
8887peano2nnd 12170 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
8988nnrecred 12204 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
9062, 89fsumrecl 15619 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ∈ ℝ)
9153recnd 11183 . . . . . . . . . 10 (𝜑 → (log‘𝐾) ∈ ℂ)
92 2cnd 12231 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
9365, 79elrpd 12954 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
9493relogcld 25978 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ∈ ℝ)
9594recnd 11183 . . . . . . . . . 10 (𝜑 → (log‘𝑌) ∈ ℂ)
9691, 92, 95pnpcan2d 11550 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) = ((log‘𝐾) − 2))
9752, 93relogmuld 25980 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) = ((log‘𝐾) + (log‘𝑌)))
9853, 94readdcld 11184 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ∈ ℝ)
9997, 98eqeltrd 2838 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ∈ ℝ)
100 fzfid 13878 . . . . . . . . . . . . . 14 (𝜑 → (0...(⌊‘𝑌)) ∈ Fin)
101 elfznn0 13534 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...(⌊‘𝑌)) → 𝑛 ∈ ℕ0)
102101adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → 𝑛 ∈ ℕ0)
103 nn0p1nn 12452 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (𝑛 + 1) ∈ ℕ)
105104nnrecred 12204 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (1 / (𝑛 + 1)) ∈ ℝ)
106100, 105fsumrecl 15619 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ∈ ℝ)
107106, 90readdcld 11184 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
108 readdcl 11134 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 + (log‘𝑌)) ∈ ℝ)
1092, 94, 108sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 + (log‘𝑌)) ∈ ℝ)
110109, 90readdcld 11184 . . . . . . . . . . . 12 (𝜑 → ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
11141, 65remulcld 11185 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
11265recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℂ)
113112mulid2d 11173 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) = 𝑌)
11444, 41, 50ltled 11303 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
115 lemul1 12007 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
11644, 41, 65, 79, 115syl112anc 1374 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
117114, 116mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) ≤ (𝐾 · 𝑌))
118113, 117eqbrtrrd 5129 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ≤ (𝐾 · 𝑌))
11942, 65, 111, 80, 118letrd 11312 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐾 · 𝑌))
120 flge0nn0 13725 . . . . . . . . . . . . . . . . . 18 (((𝐾 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
121111, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
122 nn0p1nn 12452 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝐾 · 𝑌)) ∈ ℕ0 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
123121, 122syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
124123nnrpd 12955 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℝ+)
125124relogcld 25978 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ∈ ℝ)
126 1zzd 12534 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
127111flcld 13703 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
128127peano2zd 12610 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℤ)
129 elfznn 13470 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1)) → 𝑘 ∈ ℕ)
130129adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → 𝑘 ∈ ℕ)
131 nnrecre 12195 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
132131recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
133130, 132syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → (1 / 𝑘) ∈ ℂ)
134 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (1 / 𝑘) = (1 / (𝑛 + 1)))
135126, 126, 128, 133, 134fsumshftm 15666 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)))
136 1m1e0 12225 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
137136a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 − 1) = 0)
138127zcnd 12608 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℂ)
139 ax-1cn 11109 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
140 pncan 11407 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(𝐾 · 𝑌)) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
141138, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
142137, 141oveq12d 7375 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1)) = (0...(⌊‘(𝐾 · 𝑌))))
143142sumeq1d 15586 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
144 reflcl 13701 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
14565, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ∈ ℝ)
146145ltp1d 12085 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
147 fzdisj 13468 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) < ((⌊‘𝑌) + 1) → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
149 flwordi 13717 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
15065, 111, 118, 149syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
151 elfz2nn0 13532 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘𝑌) ∈ ℕ0 ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℕ0 ∧ (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌))))
15282, 121, 150, 151syl3anbrc 1343 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))))
153 fzsplit 13467 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
154152, 153syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
155 fzfid 13878 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
156 elfznn0 13534 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ ℕ0)
157156adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ0)
158157, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
159158nnrecred 12204 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
160159recnd 11183 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
161148, 154, 155, 160fsumsplit 15626 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
162135, 143, 1613eqtrd 2780 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
163162, 107eqeltrd 2838 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) ∈ ℝ)
164 fllep1 13706 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑌) ∈ ℝ → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
165111, 164syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
16652, 93rpmulcld 12973 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · 𝑌) ∈ ℝ+)
167166, 124logled 25982 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1) ↔ (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
168165, 167mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1)))
169 emre 26355 . . . . . . . . . . . . . . . . 17 γ ∈ ℝ
170169a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → γ ∈ ℝ)
171163, 125resubcld 11583 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ)
172 0re 11157 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
173 emgt0 26356 . . . . . . . . . . . . . . . . . 18 0 < γ
174172, 169, 173ltleii 11278 . . . . . . . . . . . . . . . . 17 0 ≤ γ
175174a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ γ)
176 harmonicbnd 26353 . . . . . . . . . . . . . . . . . 18 (((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
177123, 176syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
178169, 43elicc2i 13330 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ≤ 1))
179178simp2bi 1146 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
180177, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
18142, 170, 171, 175, 180letrd 11312 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
182163, 125subge0d 11745 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ↔ (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘)))
183181, 182mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
18499, 125, 163, 168, 183letrd 11312 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
185184, 162breqtrd 5131 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
18665flcld 13703 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
187186peano2zd 12610 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
188 elfznn 13470 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...((⌊‘𝑌) + 1)) → 𝑘 ∈ ℕ)
189188adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → 𝑘 ∈ ℕ)
190189, 132syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → (1 / 𝑘) ∈ ℂ)
191126, 126, 187, 190, 134fsumshftm 15666 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)))
192145recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ ℂ)
193 pncan 11407 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
194192, 139, 193sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
195137, 194oveq12d 7375 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1)...(((⌊‘𝑌) + 1) − 1)) = (0...(⌊‘𝑌)))
196195sumeq1d 15586 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
197191, 196eqtrd 2776 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
198197, 106eqeltrd 2838 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ∈ ℝ)
19984nnrpd 12955 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
200199relogcld 25978 . . . . . . . . . . . . . . . 16 (𝜑 → (log‘((⌊‘𝑌) + 1)) ∈ ℝ)
201 readdcl 11134 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (log‘((⌊‘𝑌) + 1)) ∈ ℝ) → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
20243, 200, 201sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
203 harmonicbnd 26353 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
20484, 203syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
205169, 43elicc2i 13330 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1))
206205simp3bi 1147 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
207204, 206syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
208198, 200, 44lesubaddd 11752 . . . . . . . . . . . . . . . 16 (𝜑 → ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1 ↔ Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1)))))
209207, 208mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1))))
210 readdcl 11134 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (1 + (log‘𝑌)) ∈ ℝ)
21143, 94, 210sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (log‘𝑌)) ∈ ℝ)
212 peano2re 11328 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
213145, 212syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ)
2143, 65remulcld 11185 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ∈ ℝ)
215 epr 16090 . . . . . . . . . . . . . . . . . . . . . 22 e ∈ ℝ+
216 rpmulcl 12938 . . . . . . . . . . . . . . . . . . . . . 22 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (e · 𝑌) ∈ ℝ+)
217215, 93, 216sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (e · 𝑌) ∈ ℝ+)
218217rpred 12957 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (e · 𝑌) ∈ ℝ)
219 flle 13704 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
22065, 219syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (⌊‘𝑌) ≤ 𝑌)
22112, 10rpdivcld 12974 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (2 / 𝐸) ∈ ℝ+)
222 efgt1 15998 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 / 𝐸) ∈ ℝ+ → 1 < (exp‘(2 / 𝐸)))
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 < (exp‘(2 / 𝐸)))
224223, 66breqtrrdi 5147 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑋)
22544, 70, 65, 224, 78lttrd 11316 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑌)
22644, 65, 225ltled 11303 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≤ 𝑌)
227145, 44, 65, 65, 220, 226le2addd 11774 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((⌊‘𝑌) + 1) ≤ (𝑌 + 𝑌))
2281122timesd 12396 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑌) = (𝑌 + 𝑌))
229227, 228breqtrrd 5133 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ≤ (2 · 𝑌))
230 ere 15971 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ
231 egt2lt3 16088 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
232231simpli 484 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
2332, 230, 232ltleii 11278 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ e
234233a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ e)
235230a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → e ∈ ℝ)
236 lemul1 12007 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
2373, 235, 65, 79, 236syl112anc 1374 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
238234, 237mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ≤ (e · 𝑌))
239213, 214, 218, 229, 238letrd 11312 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘𝑌) + 1) ≤ (e · 𝑌))
240199, 217logled 25982 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((⌊‘𝑌) + 1) ≤ (e · 𝑌) ↔ (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌))))
241239, 240mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌)))
242 relogmul 25947 . . . . . . . . . . . . . . . . . . . 20 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
243215, 93, 242sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
244 loge 25942 . . . . . . . . . . . . . . . . . . . 20 (log‘e) = 1
245244oveq1i 7367 . . . . . . . . . . . . . . . . . . 19 ((log‘e) + (log‘𝑌)) = (1 + (log‘𝑌))
246243, 245eqtrdi 2792 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘(e · 𝑌)) = (1 + (log‘𝑌)))
247241, 246breqtrd 5131 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (1 + (log‘𝑌)))
248200, 211, 44, 247leadd2dd 11770 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (1 + (1 + (log‘𝑌))))
249 df-2 12216 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
250249oveq1i 7367 . . . . . . . . . . . . . . . . 17 (2 + (log‘𝑌)) = ((1 + 1) + (log‘𝑌))
251139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
252251, 251, 95addassd 11177 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
253250, 252eqtrid 2788 . . . . . . . . . . . . . . . 16 (𝜑 → (2 + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
254248, 253breqtrrd 5133 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (2 + (log‘𝑌)))
255198, 202, 109, 209, 254letrd 11312 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (2 + (log‘𝑌)))
256197, 255eqbrtrrd 5129 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ≤ (2 + (log‘𝑌)))
257106, 109, 90, 256leadd1dd 11769 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25899, 107, 110, 185, 257letrd 11312 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25997, 258eqbrtrrd 5129 . . . . . . . . . 10 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
26098, 109, 90lesubadd2d 11754 . . . . . . . . . 10 (𝜑 → ((((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ↔ ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))))
261259, 260mpbird 256 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26296, 261eqbrtrrd 5129 . . . . . . . 8 (𝜑 → ((log‘𝐾) − 2) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26389recnd 11183 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
26462, 26, 263fsummulc2 15669 . . . . . . . . . 10 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))))
2656adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℝ)
266265recnd 11183 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℂ)
26788nncnd 12169 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℂ)
26888nnne0d 12203 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ≠ 0)
269266, 267, 268divrecd 11934 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) = (𝐸 · (1 / (𝑛 + 1))))
270265, 88nndivred 12207 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ∈ ℝ)
271269, 270eqeltrrd 2839 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27262, 271fsumrecl 15619 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27387nnrpd 12955 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
274 pntpbnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
275274pntrf 26911 . . . . . . . . . . . . . . . . 17 𝑅:ℝ+⟶ℝ
276275ffvelcdmi 7034 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
277273, 276syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
27887, 88nnmulcld 12206 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
279277, 278nndivred 12207 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
280279recnd 11183 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
281280abscld 15321 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28262, 281fsumrecl 15619 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
283277, 87nndivred 12207 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℝ)
284283recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℂ)
285284abscld 15321 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / 𝑛)) ∈ ℝ)
28688nnrpd 12955 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℝ+)
287 pntpbnd1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
288287adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
289 elfzle1 13444 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
290289adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
29165adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 ∈ ℝ)
292291flcld 13703 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) ∈ ℤ)
29387nnzd 12526 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℤ)
294 zltp1le 12553 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑌) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
295292, 293, 294syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
296290, 295mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑛)
297 fllt 13711 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
298291, 293, 297syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
299296, 298mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑛)
300 elfzle2 13445 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
301300adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
302111adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐾 · 𝑌) ∈ ℝ)
303 flge 13710 . . . . . . . . . . . . . . . . . . 19 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
304302, 293, 303syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
305301, 304mpbird 256 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (𝐾 · 𝑌))
306 breq2 5109 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑌 < 𝑦𝑌 < 𝑛))
307 breq1 5108 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (𝐾 · 𝑌)))
308306, 307anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))))
309 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
310 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛𝑦 = 𝑛)
311309, 310oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑛 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑛) / 𝑛))
312311fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑛) / 𝑛)))
313312breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸))
314308, 313anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)))
315314rspcev 3581 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
316315expr 457 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
31787, 299, 305, 316syl12anc 835 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
318288, 317mtod 197 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)
319285, 265letrid 11307 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
320319ord 862 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
321318, 320mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛)))
322265, 285, 286, 321lediv1dd 13015 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ≤ ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
323284, 267, 268absdivd 15340 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))))
324277recnd 11183 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
32587nncnd 12169 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℂ)
32687nnne0d 12203 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≠ 0)
327324, 325, 267, 326, 268divdiv1d 11962 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / 𝑛) / (𝑛 + 1)) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
328327fveq2d 6846 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
329286rprege0d 12964 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)))
330 absid 15181 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
331329, 330syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
332331oveq2d 7373 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
333323, 328, 3323eqtr3rd 2785 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
334322, 269, 3333brtr3d 5136 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
33562, 271, 281, 334fsumle 15684 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336 pntpbnd1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
337274, 5, 66, 64, 15, 336, 13, 36, 287pntpbnd1 26934 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
338272, 282, 32, 335, 337letrd 11312 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ 𝐴)
339264, 338eqbrtrd 5127 . . . . . . . . 9 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴)
34090, 32, 10lemuldiv2d 13007 . . . . . . . . 9 (𝜑 → ((𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴 ↔ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸)))
341339, 340mpbid 231 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸))
34255, 90, 33, 262, 341letrd 11312 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ≤ (𝐴 / 𝐸))
34335, 55, 33, 61, 342letrd 11312 . . . . . 6 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ (𝐴 / 𝐸))
34431, 3, 33, 343subled 11758 . . . . 5 (𝜑 → ((𝐶 / 𝐸) − (𝐴 / 𝐸)) ≤ 2)
34529, 344eqbrtrd 5127 . . . 4 (𝜑 → (2 / 𝐸) ≤ 2)
3463, 10, 12, 345lediv23d 13025 . . 3 (𝜑 → (2 / 2) ≤ 𝐸)
3471, 346eqbrtrrid 5141 . 2 (𝜑 → 1 ≤ 𝐸)
3488simprd 496 . . 3 (𝜑𝐸 < 1)
349 ltnle 11234 . . . 4 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
3506, 43, 349sylancl 586 . . 3 (𝜑 → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
351348, 350mpbid 231 . 2 (𝜑 → ¬ 1 ≤ 𝐸)
352347, 351pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cun 3908  cin 3909  c0 4282   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cz 12499  cuz 12763  +crp 12915  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  ...cfz 13424  cfl 13695  abscabs 15119  Σcsu 15570  expce 15944  eceu 15945  logclog 25910  γcem 26341  ψcchp 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-atan 26217  df-em 26342  df-vma 26447  df-chp 26448
This theorem is referenced by:  pntpbnd  26936
  Copyright terms: Public domain W3C validator