MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd2 Structured version   Visualization version   GIF version

Theorem pntpbnd2 27474
Description: Lemma for pntpbnd 27475. (Contributed by Mario Carneiro, 11-Apr-2016.)
Hypotheses
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntpbnd1.e (𝜑𝐸 ∈ (0(,)1))
pntpbnd1.x 𝑋 = (exp‘(2 / 𝐸))
pntpbnd1.y (𝜑𝑌 ∈ (𝑋(,)+∞))
pntpbnd1.1 (𝜑𝐴 ∈ ℝ+)
pntpbnd1.2 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
pntpbnd1.c 𝐶 = (𝐴 + 2)
pntpbnd1.k (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
pntpbnd1.3 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
Assertion
Ref Expression
pntpbnd2 ¬ 𝜑
Distinct variable groups:   𝑖,𝑗,𝑦,𝐾   𝑅,𝑖,𝑗,𝑦   𝑖,𝑎,𝑗,𝑦,𝐴   𝑦,𝐸   𝑖,𝑌,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑗,𝑎)   𝐶(𝑦,𝑖,𝑗,𝑎)   𝑅(𝑎)   𝐸(𝑖,𝑗,𝑎)   𝐾(𝑎)   𝑋(𝑦,𝑖,𝑗,𝑎)   𝑌(𝑎)

Proof of Theorem pntpbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2div2e1 12298 . . 3 (2 / 2) = 1
2 2re 12236 . . . . 5 2 ∈ ℝ
32a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
4 ioossre 13344 . . . . . 6 (0(,)1) ⊆ ℝ
5 pntpbnd1.e . . . . . 6 (𝜑𝐸 ∈ (0(,)1))
64, 5sselid 3941 . . . . 5 (𝜑𝐸 ∈ ℝ)
7 eliooord 13342 . . . . . . 7 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
85, 7syl 17 . . . . . 6 (𝜑 → (0 < 𝐸𝐸 < 1))
98simpld 494 . . . . 5 (𝜑 → 0 < 𝐸)
106, 9elrpd 12968 . . . 4 (𝜑𝐸 ∈ ℝ+)
11 2rp 12932 . . . . 5 2 ∈ ℝ+
1211a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ+)
13 pntpbnd1.c . . . . . . . . 9 𝐶 = (𝐴 + 2)
1413oveq1i 7379 . . . . . . . 8 (𝐶𝐴) = ((𝐴 + 2) − 𝐴)
15 pntpbnd1.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
1615rpcnd 12973 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
17 2cn 12237 . . . . . . . . 9 2 ∈ ℂ
18 pncan2 11404 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 2) − 𝐴) = 2)
1916, 17, 18sylancl 586 . . . . . . . 8 (𝜑 → ((𝐴 + 2) − 𝐴) = 2)
2014, 19eqtrid 2776 . . . . . . 7 (𝜑 → (𝐶𝐴) = 2)
2120oveq1d 7384 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = (2 / 𝐸))
22 rpaddcl 12951 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 + 2) ∈ ℝ+)
2315, 11, 22sylancl 586 . . . . . . . . 9 (𝜑 → (𝐴 + 2) ∈ ℝ+)
2413, 23eqeltrid 2832 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
2524rpcnd 12973 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
266recnd 11178 . . . . . . 7 (𝜑𝐸 ∈ ℂ)
2710rpne0d 12976 . . . . . . 7 (𝜑𝐸 ≠ 0)
2825, 16, 26, 27divsubdird 11973 . . . . . 6 (𝜑 → ((𝐶𝐴) / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
2921, 28eqtr3d 2766 . . . . 5 (𝜑 → (2 / 𝐸) = ((𝐶 / 𝐸) − (𝐴 / 𝐸)))
3024, 10rpdivcld 12988 . . . . . . 7 (𝜑 → (𝐶 / 𝐸) ∈ ℝ+)
3130rpred 12971 . . . . . 6 (𝜑 → (𝐶 / 𝐸) ∈ ℝ)
3215rpred 12971 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3332, 10rerpdivcld 13002 . . . . . 6 (𝜑 → (𝐴 / 𝐸) ∈ ℝ)
34 resubcl 11462 . . . . . . . 8 (((𝐶 / 𝐸) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 / 𝐸) − 2) ∈ ℝ)
3531, 2, 34sylancl 586 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ∈ ℝ)
36 pntpbnd1.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞))
3731reefcld 16030 . . . . . . . . . . . . 13 (𝜑 → (exp‘(𝐶 / 𝐸)) ∈ ℝ)
38 elicopnf 13382 . . . . . . . . . . . . 13 ((exp‘(𝐶 / 𝐸)) ∈ ℝ → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
3937, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐾 ∈ ((exp‘(𝐶 / 𝐸))[,)+∞) ↔ (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾)))
4036, 39mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ ℝ ∧ (exp‘(𝐶 / 𝐸)) ≤ 𝐾))
4140simpld 494 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
42 0red 11153 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
43 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
4443a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
45 0lt1 11676 . . . . . . . . . . . 12 0 < 1
4645a1i 11 . . . . . . . . . . 11 (𝜑 → 0 < 1)
47 efgt1 16060 . . . . . . . . . . . . 13 ((𝐶 / 𝐸) ∈ ℝ+ → 1 < (exp‘(𝐶 / 𝐸)))
4830, 47syl 17 . . . . . . . . . . . 12 (𝜑 → 1 < (exp‘(𝐶 / 𝐸)))
4940simprd 495 . . . . . . . . . . . 12 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ 𝐾)
5044, 37, 41, 48, 49ltletrd 11310 . . . . . . . . . . 11 (𝜑 → 1 < 𝐾)
5142, 44, 41, 46, 50lttrd 11311 . . . . . . . . . 10 (𝜑 → 0 < 𝐾)
5241, 51elrpd 12968 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ+)
5352relogcld 26508 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℝ)
54 resubcl 11462 . . . . . . . 8 (((log‘𝐾) ∈ ℝ ∧ 2 ∈ ℝ) → ((log‘𝐾) − 2) ∈ ℝ)
5553, 2, 54sylancl 586 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ∈ ℝ)
5652reeflogd 26509 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐾)) = 𝐾)
5749, 56breqtrrd 5130 . . . . . . . . 9 (𝜑 → (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾)))
58 efle 16062 . . . . . . . . . 10 (((𝐶 / 𝐸) ∈ ℝ ∧ (log‘𝐾) ∈ ℝ) → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
5931, 53, 58syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐶 / 𝐸) ≤ (log‘𝐾) ↔ (exp‘(𝐶 / 𝐸)) ≤ (exp‘(log‘𝐾))))
6057, 59mpbird 257 . . . . . . . 8 (𝜑 → (𝐶 / 𝐸) ≤ (log‘𝐾))
6131, 53, 3, 60lesub1dd 11770 . . . . . . 7 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ ((log‘𝐾) − 2))
62 fzfid 13914 . . . . . . . . 9 (𝜑 → (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
63 ioossre 13344 . . . . . . . . . . . . . . 15 (𝑋(,)+∞) ⊆ ℝ
64 pntpbnd1.y . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑋(,)+∞))
6563, 64sselid 3941 . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ℝ)
66 pntpbnd1.x . . . . . . . . . . . . . . . . 17 𝑋 = (exp‘(2 / 𝐸))
67 rerpdivcl 12959 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (2 / 𝐸) ∈ ℝ)
682, 10, 67sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 / 𝐸) ∈ ℝ)
6968reefcld 16030 . . . . . . . . . . . . . . . . 17 (𝜑 → (exp‘(2 / 𝐸)) ∈ ℝ)
7066, 69eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ ℝ)
71 efgt0 16047 . . . . . . . . . . . . . . . . . 18 ((2 / 𝐸) ∈ ℝ → 0 < (exp‘(2 / 𝐸)))
7268, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < (exp‘(2 / 𝐸)))
7372, 66breqtrrdi 5144 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑋)
7470rexrd 11200 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ ℝ*)
75 elioopnf 13380 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ* → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑌 ∈ (𝑋(,)+∞) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌)))
7764, 76mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌))
7877simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑋 < 𝑌)
7942, 70, 65, 73, 78lttrd 11311 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 𝑌)
8042, 65, 79ltled 11298 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑌)
81 flge0nn0 13758 . . . . . . . . . . . . . 14 ((𝑌 ∈ ℝ ∧ 0 ≤ 𝑌) → (⌊‘𝑌) ∈ ℕ0)
8265, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (⌊‘𝑌) ∈ ℕ0)
83 nn0p1nn 12457 . . . . . . . . . . . . 13 ((⌊‘𝑌) ∈ ℕ0 → ((⌊‘𝑌) + 1) ∈ ℕ)
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℕ)
85 elfzuz 13457 . . . . . . . . . . . 12 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1)))
86 eluznn 12853 . . . . . . . . . . . 12 ((((⌊‘𝑌) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑌) + 1))) → 𝑛 ∈ ℕ)
8784, 85, 86syl2an 596 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ)
8887peano2nnd 12179 . . . . . . . . . 10 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
8988nnrecred 12213 . . . . . . . . 9 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
9062, 89fsumrecl 15676 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ∈ ℝ)
9153recnd 11178 . . . . . . . . . 10 (𝜑 → (log‘𝐾) ∈ ℂ)
92 2cnd 12240 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
9365, 79elrpd 12968 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ+)
9493relogcld 26508 . . . . . . . . . . 11 (𝜑 → (log‘𝑌) ∈ ℝ)
9594recnd 11178 . . . . . . . . . 10 (𝜑 → (log‘𝑌) ∈ ℂ)
9691, 92, 95pnpcan2d 11547 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) = ((log‘𝐾) − 2))
9752, 93relogmuld 26510 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) = ((log‘𝐾) + (log‘𝑌)))
9853, 94readdcld 11179 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ∈ ℝ)
9997, 98eqeltrd 2828 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ∈ ℝ)
100 fzfid 13914 . . . . . . . . . . . . . 14 (𝜑 → (0...(⌊‘𝑌)) ∈ Fin)
101 elfznn0 13557 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...(⌊‘𝑌)) → 𝑛 ∈ ℕ0)
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → 𝑛 ∈ ℕ0)
103 nn0p1nn 12457 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (𝑛 + 1) ∈ ℕ)
105104nnrecred 12213 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0...(⌊‘𝑌))) → (1 / (𝑛 + 1)) ∈ ℝ)
106100, 105fsumrecl 15676 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ∈ ℝ)
107106, 90readdcld 11179 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
108 readdcl 11127 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (2 + (log‘𝑌)) ∈ ℝ)
1092, 94, 108sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 + (log‘𝑌)) ∈ ℝ)
110109, 90readdcld 11179 . . . . . . . . . . . 12 (𝜑 → ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ∈ ℝ)
11141, 65remulcld 11180 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 · 𝑌) ∈ ℝ)
11265recnd 11178 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ℂ)
113112mullidd 11168 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) = 𝑌)
11444, 41, 50ltled 11298 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝐾)
115 lemul1 12010 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
11644, 41, 65, 79, 115syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1 ≤ 𝐾 ↔ (1 · 𝑌) ≤ (𝐾 · 𝑌)))
117114, 116mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 · 𝑌) ≤ (𝐾 · 𝑌))
118113, 117eqbrtrrd 5126 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌 ≤ (𝐾 · 𝑌))
11942, 65, 111, 80, 118letrd 11307 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (𝐾 · 𝑌))
120 flge0nn0 13758 . . . . . . . . . . . . . . . . . 18 (((𝐾 · 𝑌) ∈ ℝ ∧ 0 ≤ (𝐾 · 𝑌)) → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
121111, 119, 120syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℕ0)
122 nn0p1nn 12457 . . . . . . . . . . . . . . . . 17 ((⌊‘(𝐾 · 𝑌)) ∈ ℕ0 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
123121, 122syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ)
124123nnrpd 12969 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℝ+)
125124relogcld 26508 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ∈ ℝ)
126 1zzd 12540 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
127111flcld 13736 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℤ)
128127peano2zd 12617 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℤ)
129 elfznn 13490 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1)) → 𝑘 ∈ ℕ)
130129adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → 𝑘 ∈ ℕ)
131 nnrecre 12204 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
132131recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℂ)
133130, 132syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))) → (1 / 𝑘) ∈ ℂ)
134 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (1 / 𝑘) = (1 / (𝑛 + 1)))
135126, 126, 128, 133, 134fsumshftm 15723 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)))
136 1m1e0 12234 . . . . . . . . . . . . . . . . . . 19 (1 − 1) = 0
137136a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 − 1) = 0)
138127zcnd 12615 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘(𝐾 · 𝑌)) ∈ ℂ)
139 ax-1cn 11102 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
140 pncan 11403 . . . . . . . . . . . . . . . . . . 19 (((⌊‘(𝐾 · 𝑌)) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
141138, 139, 140sylancl 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((⌊‘(𝐾 · 𝑌)) + 1) − 1) = (⌊‘(𝐾 · 𝑌)))
142137, 141oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1)) = (0...(⌊‘(𝐾 · 𝑌))))
143142sumeq1d 15642 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘(𝐾 · 𝑌)) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
144 reflcl 13734 . . . . . . . . . . . . . . . . . . . 20 (𝑌 ∈ ℝ → (⌊‘𝑌) ∈ ℝ)
14565, 144syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ∈ ℝ)
146145ltp1d 12089 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) < ((⌊‘𝑌) + 1))
147 fzdisj 13488 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) < ((⌊‘𝑌) + 1) → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((0...(⌊‘𝑌)) ∩ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) = ∅)
149 flwordi 13750 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ ℝ ∧ (𝐾 · 𝑌) ∈ ℝ ∧ 𝑌 ≤ (𝐾 · 𝑌)) → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
15065, 111, 118, 149syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌)))
151 elfz2nn0 13555 . . . . . . . . . . . . . . . . . . 19 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) ↔ ((⌊‘𝑌) ∈ ℕ0 ∧ (⌊‘(𝐾 · 𝑌)) ∈ ℕ0 ∧ (⌊‘𝑌) ≤ (⌊‘(𝐾 · 𝑌))))
15282, 121, 150, 151syl3anbrc 1344 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))))
153 fzsplit 13487 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑌) ∈ (0...(⌊‘(𝐾 · 𝑌))) → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
154152, 153syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) = ((0...(⌊‘𝑌)) ∪ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))))
155 fzfid 13914 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...(⌊‘(𝐾 · 𝑌))) ∈ Fin)
156 elfznn0 13557 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌))) → 𝑛 ∈ ℕ0)
157156adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℕ0)
158157, 103syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℕ)
159158nnrecred 12213 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℝ)
160159recnd 11178 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
161148, 154, 155, 160fsumsplit 15683 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑛 ∈ (0...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
162135, 143, 1613eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) = (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
163162, 107eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) ∈ ℝ)
164 fllep1 13739 . . . . . . . . . . . . . . . 16 ((𝐾 · 𝑌) ∈ ℝ → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
165111, 164syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1))
16652, 93rpmulcld 12987 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 · 𝑌) ∈ ℝ+)
167166, 124logled 26512 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 · 𝑌) ≤ ((⌊‘(𝐾 · 𝑌)) + 1) ↔ (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
168165, 167mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (log‘((⌊‘(𝐾 · 𝑌)) + 1)))
169 emre 26892 . . . . . . . . . . . . . . . . 17 γ ∈ ℝ
170169a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → γ ∈ ℝ)
171163, 125resubcld 11582 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ)
172 0re 11152 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
173 emgt0 26893 . . . . . . . . . . . . . . . . . 18 0 < γ
174172, 169, 173ltleii 11273 . . . . . . . . . . . . . . . . 17 0 ≤ γ
175174a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ γ)
176 harmonicbnd 26890 . . . . . . . . . . . . . . . . . 18 (((⌊‘(𝐾 · 𝑌)) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
177123, 176syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1))
178169, 43elicc2i 13349 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ≤ 1))
179178simp2bi 1146 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ∈ (γ[,]1) → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
180177, 179syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → γ ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
18142, 170, 171, 175, 180letrd 11307 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))))
182163, 125subge0d 11744 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘) − (log‘((⌊‘(𝐾 · 𝑌)) + 1))) ↔ (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘)))
183181, 182mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (log‘((⌊‘(𝐾 · 𝑌)) + 1)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
18499, 125, 163, 168, 183letrd 11307 . . . . . . . . . . . . 13 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ Σ𝑘 ∈ (1...((⌊‘(𝐾 · 𝑌)) + 1))(1 / 𝑘))
185184, 162breqtrd 5128 . . . . . . . . . . . 12 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
18665flcld 13736 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘𝑌) ∈ ℤ)
187186peano2zd 12617 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℤ)
188 elfznn 13490 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...((⌊‘𝑌) + 1)) → 𝑘 ∈ ℕ)
189188adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → 𝑘 ∈ ℕ)
190189, 132syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...((⌊‘𝑌) + 1))) → (1 / 𝑘) ∈ ℂ)
191126, 126, 187, 190, 134fsumshftm 15723 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)))
192145recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘𝑌) ∈ ℂ)
193 pncan 11403 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
194192, 139, 193sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌊‘𝑌) + 1) − 1) = (⌊‘𝑌))
195137, 194oveq12d 7387 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 − 1)...(((⌊‘𝑌) + 1) − 1)) = (0...(⌊‘𝑌)))
196195sumeq1d 15642 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑛 ∈ ((1 − 1)...(((⌊‘𝑌) + 1) − 1))(1 / (𝑛 + 1)) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
197191, 196eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) = Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)))
198197, 106eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ∈ ℝ)
19984nnrpd 12969 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ+)
200199relogcld 26508 . . . . . . . . . . . . . . . 16 (𝜑 → (log‘((⌊‘𝑌) + 1)) ∈ ℝ)
201 readdcl 11127 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (log‘((⌊‘𝑌) + 1)) ∈ ℝ) → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
20243, 200, 201sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ∈ ℝ)
203 harmonicbnd 26890 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝑌) + 1) ∈ ℕ → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
20484, 203syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1))
205169, 43elicc2i 13349 . . . . . . . . . . . . . . . . . 18 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) ↔ ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ ℝ ∧ γ ≤ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∧ (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1))
206205simp3bi 1147 . . . . . . . . . . . . . . . . 17 ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ∈ (γ[,]1) → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
207204, 206syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1)
208198, 200, 44lesubaddd 11751 . . . . . . . . . . . . . . . 16 (𝜑 → ((Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) − (log‘((⌊‘𝑌) + 1))) ≤ 1 ↔ Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1)))))
209207, 208mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (1 + (log‘((⌊‘𝑌) + 1))))
210 readdcl 11127 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ (log‘𝑌) ∈ ℝ) → (1 + (log‘𝑌)) ∈ ℝ)
21143, 94, 210sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + (log‘𝑌)) ∈ ℝ)
212 peano2re 11323 . . . . . . . . . . . . . . . . . . . . 21 ((⌊‘𝑌) ∈ ℝ → ((⌊‘𝑌) + 1) ∈ ℝ)
213145, 212syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ∈ ℝ)
2143, 65remulcld 11180 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ∈ ℝ)
215 epr 16152 . . . . . . . . . . . . . . . . . . . . . 22 e ∈ ℝ+
216 rpmulcl 12952 . . . . . . . . . . . . . . . . . . . . . 22 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (e · 𝑌) ∈ ℝ+)
217215, 93, 216sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (e · 𝑌) ∈ ℝ+)
218217rpred 12971 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (e · 𝑌) ∈ ℝ)
219 flle 13737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑌 ∈ ℝ → (⌊‘𝑌) ≤ 𝑌)
22065, 219syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (⌊‘𝑌) ≤ 𝑌)
22112, 10rpdivcld 12988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (2 / 𝐸) ∈ ℝ+)
222 efgt1 16060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 / 𝐸) ∈ ℝ+ → 1 < (exp‘(2 / 𝐸)))
223221, 222syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → 1 < (exp‘(2 / 𝐸)))
224223, 66breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 < 𝑋)
22544, 70, 65, 224, 78lttrd 11311 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 𝑌)
22644, 65, 225ltled 11298 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≤ 𝑌)
227145, 44, 65, 65, 220, 226le2addd 11773 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((⌊‘𝑌) + 1) ≤ (𝑌 + 𝑌))
2281122timesd 12401 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑌) = (𝑌 + 𝑌))
229227, 228breqtrrd 5130 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((⌊‘𝑌) + 1) ≤ (2 · 𝑌))
230 ere 16031 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ
231 egt2lt3 16150 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
232231simpli 483 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
2332, 230, 232ltleii 11273 . . . . . . . . . . . . . . . . . . . . . 22 2 ≤ e
234233a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≤ e)
235230a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → e ∈ ℝ)
236 lemul1 12010 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ e ∈ ℝ ∧ (𝑌 ∈ ℝ ∧ 0 < 𝑌)) → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
2373, 235, 65, 79, 236syl112anc 1376 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ≤ e ↔ (2 · 𝑌) ≤ (e · 𝑌)))
238234, 237mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 · 𝑌) ≤ (e · 𝑌))
239213, 214, 218, 229, 238letrd 11307 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘𝑌) + 1) ≤ (e · 𝑌))
240199, 217logled 26512 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((⌊‘𝑌) + 1) ≤ (e · 𝑌) ↔ (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌))))
241239, 240mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (log‘(e · 𝑌)))
242 relogmul 26477 . . . . . . . . . . . . . . . . . . . 20 ((e ∈ ℝ+𝑌 ∈ ℝ+) → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
243215, 93, 242sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (log‘(e · 𝑌)) = ((log‘e) + (log‘𝑌)))
244 loge 26471 . . . . . . . . . . . . . . . . . . . 20 (log‘e) = 1
245244oveq1i 7379 . . . . . . . . . . . . . . . . . . 19 ((log‘e) + (log‘𝑌)) = (1 + (log‘𝑌))
246243, 245eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (𝜑 → (log‘(e · 𝑌)) = (1 + (log‘𝑌)))
247241, 246breqtrd 5128 . . . . . . . . . . . . . . . . 17 (𝜑 → (log‘((⌊‘𝑌) + 1)) ≤ (1 + (log‘𝑌)))
248200, 211, 44, 247leadd2dd 11769 . . . . . . . . . . . . . . . 16 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (1 + (1 + (log‘𝑌))))
249 df-2 12225 . . . . . . . . . . . . . . . . . 18 2 = (1 + 1)
250249oveq1i 7379 . . . . . . . . . . . . . . . . 17 (2 + (log‘𝑌)) = ((1 + 1) + (log‘𝑌))
251139a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
252251, 251, 95addassd 11172 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 1) + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
253250, 252eqtrid 2776 . . . . . . . . . . . . . . . 16 (𝜑 → (2 + (log‘𝑌)) = (1 + (1 + (log‘𝑌))))
254248, 253breqtrrd 5130 . . . . . . . . . . . . . . 15 (𝜑 → (1 + (log‘((⌊‘𝑌) + 1))) ≤ (2 + (log‘𝑌)))
255198, 202, 109, 209, 254letrd 11307 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ (1...((⌊‘𝑌) + 1))(1 / 𝑘) ≤ (2 + (log‘𝑌)))
256197, 255eqbrtrrd 5126 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) ≤ (2 + (log‘𝑌)))
257106, 109, 90, 256leadd1dd 11768 . . . . . . . . . . . 12 (𝜑 → (Σ𝑛 ∈ (0...(⌊‘𝑌))(1 / (𝑛 + 1)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25899, 107, 110, 185, 257letrd 11307 . . . . . . . . . . 11 (𝜑 → (log‘(𝐾 · 𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
25997, 258eqbrtrrd 5126 . . . . . . . . . 10 (𝜑 → ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))))
26098, 109, 90lesubadd2d 11753 . . . . . . . . . 10 (𝜑 → ((((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ↔ ((log‘𝐾) + (log‘𝑌)) ≤ ((2 + (log‘𝑌)) + Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))))
261259, 260mpbird 257 . . . . . . . . 9 (𝜑 → (((log‘𝐾) + (log‘𝑌)) − (2 + (log‘𝑌))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26296, 261eqbrtrrd 5126 . . . . . . . 8 (𝜑 → ((log‘𝐾) − 2) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)))
26389recnd 11178 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (1 / (𝑛 + 1)) ∈ ℂ)
26462, 26, 263fsummulc2 15726 . . . . . . . . . 10 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) = Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))))
2656adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℝ)
266265recnd 11178 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ∈ ℂ)
26788nncnd 12178 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℂ)
26888nnne0d 12212 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ≠ 0)
269266, 267, 268divrecd 11937 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) = (𝐸 · (1 / (𝑛 + 1))))
270265, 88nndivred 12216 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ∈ ℝ)
271269, 270eqeltrrd 2829 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27262, 271fsumrecl 15676 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ∈ ℝ)
27387nnrpd 12969 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℝ+)
274 pntpbnd.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
275274pntrf 27450 . . . . . . . . . . . . . . . . 17 𝑅:ℝ+⟶ℝ
276275ffvelcdmi 7037 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
277273, 276syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℝ)
27887, 88nnmulcld 12215 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
279277, 278nndivred 12216 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
280279recnd 11178 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
281280abscld 15381 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28262, 281fsumrecl 15676 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
283277, 87nndivred 12216 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℝ)
284283recnd 11178 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑅𝑛) / 𝑛) ∈ ℂ)
285284abscld 15381 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘((𝑅𝑛) / 𝑛)) ∈ ℝ)
28688nnrpd 12969 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 + 1) ∈ ℝ+)
287 pntpbnd1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
288287adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
289 elfzle1 13464 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
290289adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) + 1) ≤ 𝑛)
29165adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 ∈ ℝ)
292291flcld 13736 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) ∈ ℤ)
29387nnzd 12532 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℤ)
294 zltp1le 12559 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑌) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
295292, 293, 294syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((⌊‘𝑌) < 𝑛 ↔ ((⌊‘𝑌) + 1) ≤ 𝑛))
296290, 295mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (⌊‘𝑌) < 𝑛)
297 fllt 13744 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
298291, 293, 297syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑌 < 𝑛 ↔ (⌊‘𝑌) < 𝑛))
299296, 298mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑌 < 𝑛)
300 elfzle2 13465 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
301300adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (⌊‘(𝐾 · 𝑌)))
302111adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐾 · 𝑌) ∈ ℝ)
303 flge 13743 . . . . . . . . . . . . . . . . . . 19 (((𝐾 · 𝑌) ∈ ℝ ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
304302, 293, 303syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑛 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (⌊‘(𝐾 · 𝑌))))
305301, 304mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≤ (𝐾 · 𝑌))
306 breq2 5106 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑌 < 𝑦𝑌 < 𝑛))
307 breq1 5105 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (𝑦 ≤ (𝐾 · 𝑌) ↔ 𝑛 ≤ (𝐾 · 𝑌)))
308306, 307anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ↔ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))))
309 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛 → (𝑅𝑦) = (𝑅𝑛))
310 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑛𝑦 = 𝑛)
311309, 310oveq12d 7387 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑛 → ((𝑅𝑦) / 𝑦) = ((𝑅𝑛) / 𝑛))
312311fveq2d 6844 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑛 → (abs‘((𝑅𝑦) / 𝑦)) = (abs‘((𝑅𝑛) / 𝑛)))
313312breq1d 5112 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → ((abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸))
314308, 313anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → (((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸) ↔ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)))
315314rspcev 3585 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)) → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸))
316315expr 456 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑌 < 𝑛𝑛 ≤ (𝐾 · 𝑌))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
31787, 299, 305, 316syl12anc 836 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸 → ∃𝑦 ∈ ℕ ((𝑌 < 𝑦𝑦 ≤ (𝐾 · 𝑌)) ∧ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐸)))
318288, 317mtod 198 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸)
319285, 265letrid 11302 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
320319ord 864 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (¬ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝐸𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛))))
321318, 320mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝐸 ≤ (abs‘((𝑅𝑛) / 𝑛)))
322265, 285, 286, 321lediv1dd 13029 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 / (𝑛 + 1)) ≤ ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
323284, 267, 268absdivd 15400 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))))
324277recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝑅𝑛) ∈ ℂ)
32587nncnd 12178 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ∈ ℂ)
32687nnne0d 12212 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → 𝑛 ≠ 0)
327324, 325, 267, 326, 268divdiv1d 11965 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (((𝑅𝑛) / 𝑛) / (𝑛 + 1)) = ((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
328327fveq2d 6844 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(((𝑅𝑛) / 𝑛) / (𝑛 + 1))) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
329286rprege0d 12978 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)))
330 absid 15238 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ ℝ ∧ 0 ≤ (𝑛 + 1)) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
331329, 330syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (abs‘(𝑛 + 1)) = (𝑛 + 1))
332331oveq2d 7385 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (abs‘(𝑛 + 1))) = ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)))
333323, 328, 3323eqtr3rd 2773 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → ((abs‘((𝑅𝑛) / 𝑛)) / (𝑛 + 1)) = (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
334322, 269, 3333brtr3d 5133 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))) → (𝐸 · (1 / (𝑛 + 1))) ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
33562, 271, 281, 334fsumle 15741 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
336 pntpbnd1.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑦 ∈ (𝑖...𝑗)((𝑅𝑦) / (𝑦 · (𝑦 + 1)))) ≤ 𝐴)
337274, 5, 66, 64, 15, 336, 13, 36, 287pntpbnd1 27473 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝐴)
338272, 282, 32, 335, 337letrd 11307 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(𝐸 · (1 / (𝑛 + 1))) ≤ 𝐴)
339264, 338eqbrtrd 5124 . . . . . . . . 9 (𝜑 → (𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴)
34090, 32, 10lemuldiv2d 13021 . . . . . . . . 9 (𝜑 → ((𝐸 · Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1))) ≤ 𝐴 ↔ Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸)))
341339, 340mpbid 232 . . . . . . . 8 (𝜑 → Σ𝑛 ∈ (((⌊‘𝑌) + 1)...(⌊‘(𝐾 · 𝑌)))(1 / (𝑛 + 1)) ≤ (𝐴 / 𝐸))
34255, 90, 33, 262, 341letrd 11307 . . . . . . 7 (𝜑 → ((log‘𝐾) − 2) ≤ (𝐴 / 𝐸))
34335, 55, 33, 61, 342letrd 11307 . . . . . 6 (𝜑 → ((𝐶 / 𝐸) − 2) ≤ (𝐴 / 𝐸))
34431, 3, 33, 343subled 11757 . . . . 5 (𝜑 → ((𝐶 / 𝐸) − (𝐴 / 𝐸)) ≤ 2)
34529, 344eqbrtrd 5124 . . . 4 (𝜑 → (2 / 𝐸) ≤ 2)
3463, 10, 12, 345lediv23d 13039 . . 3 (𝜑 → (2 / 2) ≤ 𝐸)
3471, 346eqbrtrrid 5138 . 2 (𝜑 → 1 ≤ 𝐸)
3488simprd 495 . . 3 (𝜑𝐸 < 1)
349 ltnle 11229 . . . 4 ((𝐸 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
3506, 43, 349sylancl 586 . . 3 (𝜑 → (𝐸 < 1 ↔ ¬ 1 ≤ 𝐸))
351348, 350mpbid 232 . 2 (𝜑 → ¬ 1 ≤ 𝐸)
352347, 351pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3909  cin 3910  c0 4292   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  +crp 12927  (,)cioo 13282  [,)cico 13284  [,]cicc 13285  ...cfz 13444  cfl 13728  abscabs 15176  Σcsu 15628  expce 16003  eceu 16004  logclog 26439  γcem 26878  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-ulm 26262  df-log 26441  df-atan 26753  df-em 26879  df-vma 26984  df-chp 26985
This theorem is referenced by:  pntpbnd  27475
  Copyright terms: Public domain W3C validator