Step | Hyp | Ref
| Expression |
1 | | vdw.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Fin) |
2 | | hashcl 13999 |
. . . . . . 7
⊢ (𝑅 ∈ Fin →
(♯‘𝑅) ∈
ℕ0) |
3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘𝑅) ∈
ℕ0) |
4 | 3 | nn0red 12224 |
. . . . 5
⊢ (𝜑 → (♯‘𝑅) ∈
ℝ) |
5 | 4 | ltp1d 11835 |
. . . 4
⊢ (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1)) |
6 | | nn0p1nn 12202 |
. . . . . . 7
⊢
((♯‘𝑅)
∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℕ) |
8 | 7 | nnnn0d 12223 |
. . . . 5
⊢ (𝜑 → ((♯‘𝑅) + 1) ∈
ℕ0) |
9 | | hashfz1 13988 |
. . . . 5
⊢
(((♯‘𝑅)
+ 1) ∈ ℕ0 →
(♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1)) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 →
(♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1)) |
11 | 5, 10 | breqtrrd 5098 |
. . 3
⊢ (𝜑 → (♯‘𝑅) <
(♯‘(1...((♯‘𝑅) + 1)))) |
12 | | fzfi 13620 |
. . . 4
⊢
(1...((♯‘𝑅) + 1)) ∈ Fin |
13 | | hashsdom 14024 |
. . . 4
⊢ ((𝑅 ∈ Fin ∧
(1...((♯‘𝑅) +
1)) ∈ Fin) → ((♯‘𝑅) <
(♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1)))) |
14 | 1, 12, 13 | sylancl 585 |
. . 3
⊢ (𝜑 → ((♯‘𝑅) <
(♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1)))) |
15 | 11, 14 | mpbid 231 |
. 2
⊢ (𝜑 → 𝑅 ≺ (1...((♯‘𝑅) + 1))) |
16 | | vdwlem12.f |
. . . . 5
⊢ (𝜑 → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅) |
17 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
18 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
19 | 17, 18 | eqeqan12d 2752 |
. . . . . . . 8
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
20 | | eqeq12 2755 |
. . . . . . . 8
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (𝑧 = 𝑤 ↔ 𝑥 = 𝑦)) |
21 | 19, 20 | imbi12d 344 |
. . . . . . 7
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑦) → (((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
22 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
23 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
24 | 22, 23 | eqeqan12d 2752 |
. . . . . . . . 9
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐹‘𝑦) = (𝐹‘𝑥))) |
25 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝐹‘𝑦) = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = (𝐹‘𝑦)) |
26 | 24, 25 | bitrdi 286 |
. . . . . . . 8
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ (𝐹‘𝑥) = (𝐹‘𝑦))) |
27 | | eqeq12 2755 |
. . . . . . . . 9
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝑧 = 𝑤 ↔ 𝑦 = 𝑥)) |
28 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
29 | 27, 28 | bitrdi 286 |
. . . . . . . 8
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (𝑧 = 𝑤 ↔ 𝑥 = 𝑦)) |
30 | 26, 29 | imbi12d 344 |
. . . . . . 7
⊢ ((𝑧 = 𝑦 ∧ 𝑤 = 𝑥) → (((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
31 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(1...((♯‘𝑅) +
1)) → 𝑥 ∈
ℕ) |
32 | 31 | nnred 11918 |
. . . . . . . . 9
⊢ (𝑥 ∈
(1...((♯‘𝑅) +
1)) → 𝑥 ∈
ℝ) |
33 | 32 | ssriv 3921 |
. . . . . . . 8
⊢
(1...((♯‘𝑅) + 1)) ⊆ ℝ |
34 | 33 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...((♯‘𝑅) + 1)) ⊆
ℝ) |
35 | | biidd 261 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
36 | | simplr3 1215 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ≤ 𝑦) |
37 | | vdwlem12.2 |
. . . . . . . . . . 11
⊢ (𝜑 → ¬ 2 MonoAP 𝐹) |
38 | 37 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ¬ 2 MonoAP 𝐹) |
39 | | 3simpa 1146 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
(1...((♯‘𝑅) +
1)) ∧ 𝑦 ∈
(1...((♯‘𝑅) +
1)) ∧ 𝑥 ≤ 𝑦) → (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) |
40 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1))) |
41 | 40, 31 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ) |
42 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦) |
43 | | simplrr 774 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1))) |
44 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈
(1...((♯‘𝑅) +
1)) → 𝑦 ∈
ℕ) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ) |
46 | | nnsub 11947 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦 − 𝑥) ∈ ℕ)) |
47 | 41, 45, 46 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦 − 𝑥) ∈ ℕ)) |
48 | 42, 47 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 − 𝑥) ∈ ℕ) |
49 | | df-2 11966 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 = (1 +
1) |
50 | 49 | fveq2i 6759 |
. . . . . . . . . . . . . . . . . 18
⊢
(AP‘2) = (AP‘(1 + 1)) |
51 | 50 | oveqi 7268 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥(AP‘2)(𝑦 − 𝑥)) = (𝑥(AP‘(1 + 1))(𝑦 − 𝑥)) |
52 | | 1nn0 12179 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ0 |
53 | | vdwapun 16603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℕ0 ∧ 𝑥 ∈ ℕ ∧ (𝑦 − 𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦 − 𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)))) |
54 | 52, 41, 48, 53 | mp3an2i 1464 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦 − 𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)))) |
55 | 51, 54 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦 − 𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)))) |
56 | | simprl 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
57 | 16 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅) |
58 | 57 | ffnd 6585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((♯‘𝑅) + 1))) |
59 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)))) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)))) |
61 | 40, 56, 60 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑦)})) |
62 | 61 | snssd 4739 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
63 | 41 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ) |
64 | 45 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ) |
65 | 63, 64 | pncan3d 11265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦 − 𝑥)) = 𝑦) |
66 | 65 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)) = (𝑦(AP‘1)(𝑦 − 𝑥))) |
67 | | vdwap1 16606 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ ∧ (𝑦 − 𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦 − 𝑥)) = {𝑦}) |
68 | 45, 48, 67 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦 − 𝑥)) = {𝑦}) |
69 | 66, 68 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)) = {𝑦}) |
70 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
71 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑦 ∈ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹‘𝑦) = (𝐹‘𝑦)))) |
72 | 58, 71 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹‘𝑦) = (𝐹‘𝑦)))) |
73 | 43, 70, 72 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (◡𝐹 “ {(𝐹‘𝑦)})) |
74 | 73 | snssd 4739 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
75 | 69, 74 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥)) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
76 | 62, 75 | unssd 4116 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦 − 𝑥))(AP‘1)(𝑦 − 𝑥))) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
77 | 55, 76 | eqsstrd 3955 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦 − 𝑥)) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
78 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑)) |
79 | 78 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}))) |
80 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝑦 − 𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦 − 𝑥))) |
81 | 80 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝑦 − 𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}) ↔ (𝑥(AP‘2)(𝑦 − 𝑥)) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}))) |
82 | 79, 81 | rspc2ev 3564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℕ ∧ (𝑦 − 𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦 − 𝑥)) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
83 | 41, 48, 77, 82 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)})) |
84 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝑦) ∈ V |
85 | | sneq 4568 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 = (𝐹‘𝑦) → {𝑐} = {(𝐹‘𝑦)}) |
86 | 85 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝐹‘𝑦) → (◡𝐹 “ {𝑐}) = (◡𝐹 “ {(𝐹‘𝑦)})) |
87 | 86 | sseq2d 3949 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐹‘𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}))) |
88 | 87 | 2rexbidv 3228 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐹‘𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}))) |
89 | 84, 88 | spcev 3535 |
. . . . . . . . . . . . . 14
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {(𝐹‘𝑦)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
90 | 83, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
91 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢
(1...((♯‘𝑅) + 1)) ∈ V |
92 | | 2nn0 12180 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ0 |
93 | 92 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈
ℕ0) |
94 | 91, 93, 57 | vdwmc 16607 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
95 | 90, 94 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹) |
96 | 39, 95 | sylanl2 677 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹) |
97 | 96 | expr 456 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹)) |
98 | 38, 97 | mtod 197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → ¬ 𝑥 < 𝑦) |
99 | | simplr1 1213 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1))) |
100 | 99, 32 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 ∈ ℝ) |
101 | | simplr2 1214 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1))) |
102 | 33, 101 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑦 ∈ ℝ) |
103 | 100, 102 | eqleltd 11049 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → (𝑥 = 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ ¬ 𝑥 < 𝑦))) |
104 | 36, 98, 103 | mpbir2and 709 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) → 𝑥 = 𝑦) |
105 | 104 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥 ≤ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
106 | 21, 30, 34, 35, 105 | wlogle 11438 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
107 | 106 | ralrimivva 3114 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈
(1...((♯‘𝑅) +
1))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
108 | | dff13 7109 |
. . . . 5
⊢ (𝐹:(1...((♯‘𝑅) + 1))–1-1→𝑅 ↔ (𝐹:(1...((♯‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈
(1...((♯‘𝑅) +
1))((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
109 | 16, 107, 108 | sylanbrc 582 |
. . . 4
⊢ (𝜑 → 𝐹:(1...((♯‘𝑅) + 1))–1-1→𝑅) |
110 | | f1domg 8715 |
. . . 4
⊢ (𝑅 ∈ Fin → (𝐹:(1...((♯‘𝑅) + 1))–1-1→𝑅 → (1...((♯‘𝑅) + 1)) ≼ 𝑅)) |
111 | 1, 109, 110 | sylc 65 |
. . 3
⊢ (𝜑 → (1...((♯‘𝑅) + 1)) ≼ 𝑅) |
112 | | domnsym 8839 |
. . 3
⊢
((1...((♯‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1))) |
113 | 111, 112 | syl 17 |
. 2
⊢ (𝜑 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1))) |
114 | 15, 113 | pm2.65i 193 |
1
⊢ ¬
𝜑 |