MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem12 Structured version   Visualization version   GIF version

Theorem vdwlem12 16963
Description: Lemma for vdw 16965. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem12.f (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
vdwlem12.2 (𝜑 → ¬ 2 MonoAP 𝐹)
Assertion
Ref Expression
vdwlem12 ¬ 𝜑

Proof of Theorem vdwlem12
Dummy variables 𝑎 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . . . . . 7 (𝜑𝑅 ∈ Fin)
2 hashcl 14321 . . . . . . 7 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝜑 → (♯‘𝑅) ∈ ℕ0)
43nn0red 12504 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℝ)
54ltp1d 12113 . . . 4 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
6 nn0p1nn 12481 . . . . . . 7 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
73, 6syl 17 . . . . . 6 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
87nnnn0d 12503 . . . . 5 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ0)
9 hashfz1 14311 . . . . 5 (((♯‘𝑅) + 1) ∈ ℕ0 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
108, 9syl 17 . . . 4 (𝜑 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
115, 10breqtrrd 5135 . . 3 (𝜑 → (♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))))
12 fzfi 13937 . . . 4 (1...((♯‘𝑅) + 1)) ∈ Fin
13 hashsdom 14346 . . . 4 ((𝑅 ∈ Fin ∧ (1...((♯‘𝑅) + 1)) ∈ Fin) → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
141, 12, 13sylancl 586 . . 3 (𝜑 → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
1511, 14mpbid 232 . 2 (𝜑𝑅 ≺ (1...((♯‘𝑅) + 1)))
16 vdwlem12.f . . . . 5 (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
17 fveq2 6858 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1917, 18eqeqan12d 2743 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
20 eqeq12 2746 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑧 = 𝑤𝑥 = 𝑦))
2119, 20imbi12d 344 . . . . . . 7 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
22 fveq2 6858 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2422, 23eqeqan12d 2743 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
25 eqcom 2736 . . . . . . . . 9 ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑥) = (𝐹𝑦))
2624, 25bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
27 eqeq12 2746 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑦 = 𝑥))
28 eqcom 2736 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
2927, 28bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑥 = 𝑦))
3026, 29imbi12d 344 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
31 elfznn 13514 . . . . . . . . . 10 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℕ)
3231nnred 12201 . . . . . . . . 9 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℝ)
3332ssriv 3950 . . . . . . . 8 (1...((♯‘𝑅) + 1)) ⊆ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → (1...((♯‘𝑅) + 1)) ⊆ ℝ)
35 biidd 262 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
36 simplr3 1218 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝑦)
37 vdwlem12.2 . . . . . . . . . . 11 (𝜑 → ¬ 2 MonoAP 𝐹)
3837ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 2 MonoAP 𝐹)
39 3simpa 1148 . . . . . . . . . . . 12 ((𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦) → (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1))))
40 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
4140, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ)
42 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
43 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
44 elfznn 13514 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((♯‘𝑅) + 1)) → 𝑦 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ)
46 nnsub 12230 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4741, 45, 46syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4842, 47mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦𝑥) ∈ ℕ)
49 df-2 12249 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
5049fveq2i 6861 . . . . . . . . . . . . . . . . . 18 (AP‘2) = (AP‘(1 + 1))
5150oveqi 7400 . . . . . . . . . . . . . . . . 17 (𝑥(AP‘2)(𝑦𝑥)) = (𝑥(AP‘(1 + 1))(𝑦𝑥))
52 1nn0 12458 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
53 vdwapun 16945 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℕ0𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5452, 41, 48, 53mp3an2i 1468 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5551, 54eqtrid 2776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
56 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) = (𝐹𝑦))
5716ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
5857ffnd 6689 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((♯‘𝑅) + 1)))
59 fniniseg 7032 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6140, 56, 60mpbir2and 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (𝐹 “ {(𝐹𝑦)}))
6261snssd 4773 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (𝐹 “ {(𝐹𝑦)}))
6341nncnd 12202 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
6445nncnd 12202 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
6563, 64pncan3d 11536 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦𝑥)) = 𝑦)
6665oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = (𝑦(AP‘1)(𝑦𝑥)))
67 vdwap1 16948 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6845, 48, 67syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6966, 68eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = {𝑦})
70 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) = (𝐹𝑦))
71 fniniseg 7032 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7258, 71syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7343, 70, 72mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐹 “ {(𝐹𝑦)}))
7473snssd 4773 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (𝐹 “ {(𝐹𝑦)}))
7569, 74eqsstrd 3981 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
7662, 75unssd 4155 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))) ⊆ (𝐹 “ {(𝐹𝑦)}))
7755, 76eqsstrd 3981 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
78 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑))
7978sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
80 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑦𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦𝑥)))
8180sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑦𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})))
8279, 81rspc2ev 3601 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
8341, 48, 77, 82syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
84 fvex 6871 . . . . . . . . . . . . . . 15 (𝐹𝑦) ∈ V
85 sneq 4599 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑦) → {𝑐} = {(𝐹𝑦)})
8685imaeq2d 6031 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑦) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝑦)}))
8786sseq2d 3979 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
88872rexbidv 3202 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
8984, 88spcev 3572 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
9083, 89syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
91 ovex 7420 . . . . . . . . . . . . . 14 (1...((♯‘𝑅) + 1)) ∈ V
92 2nn0 12459 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9392a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℕ0)
9491, 93, 57vdwmc 16949 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐})))
9590, 94mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9639, 95sylanl2 681 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9796expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹))
9838, 97mtod 198 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝑥 < 𝑦)
99 simplr1 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
10099, 32syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
101 simplr2 1217 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
10233, 101sselid 3944 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
103100, 102eqleltd 11318 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 = 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 < 𝑦)))
10436, 98, 103mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
105104ex 412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
10621, 30, 34, 35, 105wlogle 11711 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
107106ralrimivva 3180 . . . . 5 (𝜑 → ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
108 dff13 7229 . . . . 5 (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 ↔ (𝐹:(1...((♯‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10916, 107, 108sylanbrc 583 . . . 4 (𝜑𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅)
110 f1domg 8943 . . . 4 (𝑅 ∈ Fin → (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 → (1...((♯‘𝑅) + 1)) ≼ 𝑅))
1111, 109, 110sylc 65 . . 3 (𝜑 → (1...((♯‘𝑅) + 1)) ≼ 𝑅)
112 domnsym 9067 . . 3 ((1...((♯‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
113111, 112syl 17 . 2 (𝜑 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
11415, 113pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cun 3912  wss 3914  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  cdom 8916  csdm 8917  Fincfn 8918  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  ...cfz 13468  chash 14295  APcvdwa 16936   MonoAP cvdwm 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-vdwap 16939  df-vdwmc 16940
This theorem is referenced by:  vdwlem13  16964
  Copyright terms: Public domain W3C validator