MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem12 Structured version   Visualization version   GIF version

Theorem vdwlem12 17030
Description: Lemma for vdw 17032. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem12.f (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
vdwlem12.2 (𝜑 → ¬ 2 MonoAP 𝐹)
Assertion
Ref Expression
vdwlem12 ¬ 𝜑

Proof of Theorem vdwlem12
Dummy variables 𝑎 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . . . . . 7 (𝜑𝑅 ∈ Fin)
2 hashcl 14395 . . . . . . 7 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝜑 → (♯‘𝑅) ∈ ℕ0)
43nn0red 12588 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℝ)
54ltp1d 12198 . . . 4 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
6 nn0p1nn 12565 . . . . . . 7 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
73, 6syl 17 . . . . . 6 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
87nnnn0d 12587 . . . . 5 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ0)
9 hashfz1 14385 . . . . 5 (((♯‘𝑅) + 1) ∈ ℕ0 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
108, 9syl 17 . . . 4 (𝜑 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
115, 10breqtrrd 5171 . . 3 (𝜑 → (♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))))
12 fzfi 14013 . . . 4 (1...((♯‘𝑅) + 1)) ∈ Fin
13 hashsdom 14420 . . . 4 ((𝑅 ∈ Fin ∧ (1...((♯‘𝑅) + 1)) ∈ Fin) → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
141, 12, 13sylancl 586 . . 3 (𝜑 → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
1511, 14mpbid 232 . 2 (𝜑𝑅 ≺ (1...((♯‘𝑅) + 1)))
16 vdwlem12.f . . . . 5 (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
17 fveq2 6906 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 fveq2 6906 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1917, 18eqeqan12d 2751 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
20 eqeq12 2754 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑧 = 𝑤𝑥 = 𝑦))
2119, 20imbi12d 344 . . . . . . 7 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
22 fveq2 6906 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 fveq2 6906 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2422, 23eqeqan12d 2751 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
25 eqcom 2744 . . . . . . . . 9 ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑥) = (𝐹𝑦))
2624, 25bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
27 eqeq12 2754 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑦 = 𝑥))
28 eqcom 2744 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
2927, 28bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑥 = 𝑦))
3026, 29imbi12d 344 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
31 elfznn 13593 . . . . . . . . . 10 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℕ)
3231nnred 12281 . . . . . . . . 9 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℝ)
3332ssriv 3987 . . . . . . . 8 (1...((♯‘𝑅) + 1)) ⊆ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → (1...((♯‘𝑅) + 1)) ⊆ ℝ)
35 biidd 262 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
36 simplr3 1218 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝑦)
37 vdwlem12.2 . . . . . . . . . . 11 (𝜑 → ¬ 2 MonoAP 𝐹)
3837ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 2 MonoAP 𝐹)
39 3simpa 1149 . . . . . . . . . . . 12 ((𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦) → (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1))))
40 simplrl 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
4140, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ)
42 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
43 simplrr 778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
44 elfznn 13593 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((♯‘𝑅) + 1)) → 𝑦 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ)
46 nnsub 12310 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4741, 45, 46syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4842, 47mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦𝑥) ∈ ℕ)
49 df-2 12329 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
5049fveq2i 6909 . . . . . . . . . . . . . . . . . 18 (AP‘2) = (AP‘(1 + 1))
5150oveqi 7444 . . . . . . . . . . . . . . . . 17 (𝑥(AP‘2)(𝑦𝑥)) = (𝑥(AP‘(1 + 1))(𝑦𝑥))
52 1nn0 12542 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
53 vdwapun 17012 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℕ0𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5452, 41, 48, 53mp3an2i 1468 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5551, 54eqtrid 2789 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
56 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) = (𝐹𝑦))
5716ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
5857ffnd 6737 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((♯‘𝑅) + 1)))
59 fniniseg 7080 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6140, 56, 60mpbir2and 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (𝐹 “ {(𝐹𝑦)}))
6261snssd 4809 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (𝐹 “ {(𝐹𝑦)}))
6341nncnd 12282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
6445nncnd 12282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
6563, 64pncan3d 11623 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦𝑥)) = 𝑦)
6665oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = (𝑦(AP‘1)(𝑦𝑥)))
67 vdwap1 17015 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6845, 48, 67syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6966, 68eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = {𝑦})
70 eqidd 2738 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) = (𝐹𝑦))
71 fniniseg 7080 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7258, 71syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7343, 70, 72mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐹 “ {(𝐹𝑦)}))
7473snssd 4809 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (𝐹 “ {(𝐹𝑦)}))
7569, 74eqsstrd 4018 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
7662, 75unssd 4192 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))) ⊆ (𝐹 “ {(𝐹𝑦)}))
7755, 76eqsstrd 4018 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
78 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑))
7978sseq1d 4015 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
80 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑦𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦𝑥)))
8180sseq1d 4015 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑦𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})))
8279, 81rspc2ev 3635 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
8341, 48, 77, 82syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
84 fvex 6919 . . . . . . . . . . . . . . 15 (𝐹𝑦) ∈ V
85 sneq 4636 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑦) → {𝑐} = {(𝐹𝑦)})
8685imaeq2d 6078 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑦) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝑦)}))
8786sseq2d 4016 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
88872rexbidv 3222 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
8984, 88spcev 3606 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
9083, 89syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
91 ovex 7464 . . . . . . . . . . . . . 14 (1...((♯‘𝑅) + 1)) ∈ V
92 2nn0 12543 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9392a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℕ0)
9491, 93, 57vdwmc 17016 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐})))
9590, 94mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9639, 95sylanl2 681 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9796expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹))
9838, 97mtod 198 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝑥 < 𝑦)
99 simplr1 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
10099, 32syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
101 simplr2 1217 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
10233, 101sselid 3981 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
103100, 102eqleltd 11405 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 = 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 < 𝑦)))
10436, 98, 103mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
105104ex 412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
10621, 30, 34, 35, 105wlogle 11796 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
107106ralrimivva 3202 . . . . 5 (𝜑 → ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
108 dff13 7275 . . . . 5 (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 ↔ (𝐹:(1...((♯‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10916, 107, 108sylanbrc 583 . . . 4 (𝜑𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅)
110 f1domg 9012 . . . 4 (𝑅 ∈ Fin → (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 → (1...((♯‘𝑅) + 1)) ≼ 𝑅))
1111, 109, 110sylc 65 . . 3 (𝜑 → (1...((♯‘𝑅) + 1)) ≼ 𝑅)
112 domnsym 9139 . . 3 ((1...((♯‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
113111, 112syl 17 . 2 (𝜑 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
11415, 113pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  cun 3949  wss 3951  {csn 4626   class class class wbr 5143  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  cdom 8983  csdm 8984  Fincfn 8985  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  cn 12266  2c2 12321  0cn0 12526  ...cfz 13547  chash 14369  APcvdwa 17003   MonoAP cvdwm 17004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-vdwap 17006  df-vdwmc 17007
This theorem is referenced by:  vdwlem13  17031
  Copyright terms: Public domain W3C validator