MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem12 Structured version   Visualization version   GIF version

Theorem vdwlem12 17017
Description: Lemma for vdw 17019. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem12.f (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
vdwlem12.2 (𝜑 → ¬ 2 MonoAP 𝐹)
Assertion
Ref Expression
vdwlem12 ¬ 𝜑

Proof of Theorem vdwlem12
Dummy variables 𝑎 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . . . . . 7 (𝜑𝑅 ∈ Fin)
2 hashcl 14379 . . . . . . 7 (𝑅 ∈ Fin → (♯‘𝑅) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝜑 → (♯‘𝑅) ∈ ℕ0)
43nn0red 12568 . . . . 5 (𝜑 → (♯‘𝑅) ∈ ℝ)
54ltp1d 12177 . . . 4 (𝜑 → (♯‘𝑅) < ((♯‘𝑅) + 1))
6 nn0p1nn 12545 . . . . . . 7 ((♯‘𝑅) ∈ ℕ0 → ((♯‘𝑅) + 1) ∈ ℕ)
73, 6syl 17 . . . . . 6 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ)
87nnnn0d 12567 . . . . 5 (𝜑 → ((♯‘𝑅) + 1) ∈ ℕ0)
9 hashfz1 14369 . . . . 5 (((♯‘𝑅) + 1) ∈ ℕ0 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
108, 9syl 17 . . . 4 (𝜑 → (♯‘(1...((♯‘𝑅) + 1))) = ((♯‘𝑅) + 1))
115, 10breqtrrd 5152 . . 3 (𝜑 → (♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))))
12 fzfi 13995 . . . 4 (1...((♯‘𝑅) + 1)) ∈ Fin
13 hashsdom 14404 . . . 4 ((𝑅 ∈ Fin ∧ (1...((♯‘𝑅) + 1)) ∈ Fin) → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
141, 12, 13sylancl 586 . . 3 (𝜑 → ((♯‘𝑅) < (♯‘(1...((♯‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((♯‘𝑅) + 1))))
1511, 14mpbid 232 . 2 (𝜑𝑅 ≺ (1...((♯‘𝑅) + 1)))
16 vdwlem12.f . . . . 5 (𝜑𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
17 fveq2 6881 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 fveq2 6881 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1917, 18eqeqan12d 2750 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
20 eqeq12 2753 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑧 = 𝑤𝑥 = 𝑦))
2119, 20imbi12d 344 . . . . . . 7 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
22 fveq2 6881 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 fveq2 6881 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2422, 23eqeqan12d 2750 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
25 eqcom 2743 . . . . . . . . 9 ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑥) = (𝐹𝑦))
2624, 25bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
27 eqeq12 2753 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑦 = 𝑥))
28 eqcom 2743 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
2927, 28bitrdi 287 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑥 = 𝑦))
3026, 29imbi12d 344 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
31 elfznn 13575 . . . . . . . . . 10 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℕ)
3231nnred 12260 . . . . . . . . 9 (𝑥 ∈ (1...((♯‘𝑅) + 1)) → 𝑥 ∈ ℝ)
3332ssriv 3967 . . . . . . . 8 (1...((♯‘𝑅) + 1)) ⊆ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → (1...((♯‘𝑅) + 1)) ⊆ ℝ)
35 biidd 262 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
36 simplr3 1218 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝑦)
37 vdwlem12.2 . . . . . . . . . . 11 (𝜑 → ¬ 2 MonoAP 𝐹)
3837ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 2 MonoAP 𝐹)
39 3simpa 1148 . . . . . . . . . . . 12 ((𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦) → (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1))))
40 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
4140, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ)
42 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
43 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
44 elfznn 13575 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((♯‘𝑅) + 1)) → 𝑦 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ)
46 nnsub 12289 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4741, 45, 46syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4842, 47mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦𝑥) ∈ ℕ)
49 df-2 12308 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
5049fveq2i 6884 . . . . . . . . . . . . . . . . . 18 (AP‘2) = (AP‘(1 + 1))
5150oveqi 7423 . . . . . . . . . . . . . . . . 17 (𝑥(AP‘2)(𝑦𝑥)) = (𝑥(AP‘(1 + 1))(𝑦𝑥))
52 1nn0 12522 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
53 vdwapun 16999 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℕ0𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5452, 41, 48, 53mp3an2i 1468 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5551, 54eqtrid 2783 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
56 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) = (𝐹𝑦))
5716ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((♯‘𝑅) + 1))⟶𝑅)
5857ffnd 6712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((♯‘𝑅) + 1)))
59 fniniseg 7055 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6140, 56, 60mpbir2and 713 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (𝐹 “ {(𝐹𝑦)}))
6261snssd 4790 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (𝐹 “ {(𝐹𝑦)}))
6341nncnd 12261 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
6445nncnd 12261 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
6563, 64pncan3d 11602 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦𝑥)) = 𝑦)
6665oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = (𝑦(AP‘1)(𝑦𝑥)))
67 vdwap1 17002 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6845, 48, 67syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
6966, 68eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = {𝑦})
70 eqidd 2737 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) = (𝐹𝑦))
71 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...((♯‘𝑅) + 1)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7258, 71syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7343, 70, 72mpbir2and 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐹 “ {(𝐹𝑦)}))
7473snssd 4790 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (𝐹 “ {(𝐹𝑦)}))
7569, 74eqsstrd 3998 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
7662, 75unssd 4172 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))) ⊆ (𝐹 “ {(𝐹𝑦)}))
7755, 76eqsstrd 3998 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
78 oveq1 7417 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑))
7978sseq1d 3995 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
80 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑦𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦𝑥)))
8180sseq1d 3995 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑦𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})))
8279, 81rspc2ev 3619 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
8341, 48, 77, 82syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
84 fvex 6894 . . . . . . . . . . . . . . 15 (𝐹𝑦) ∈ V
85 sneq 4616 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑦) → {𝑐} = {(𝐹𝑦)})
8685imaeq2d 6052 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑦) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝑦)}))
8786sseq2d 3996 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
88872rexbidv 3210 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
8984, 88spcev 3590 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
9083, 89syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
91 ovex 7443 . . . . . . . . . . . . . 14 (1...((♯‘𝑅) + 1)) ∈ V
92 2nn0 12523 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9392a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℕ0)
9491, 93, 57vdwmc 17003 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐})))
9590, 94mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9639, 95sylanl2 681 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9796expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹))
9838, 97mtod 198 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝑥 < 𝑦)
99 simplr1 1216 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ (1...((♯‘𝑅) + 1)))
10099, 32syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
101 simplr2 1217 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ (1...((♯‘𝑅) + 1)))
10233, 101sselid 3961 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
103100, 102eqleltd 11384 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 = 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 < 𝑦)))
10436, 98, 103mpbir2and 713 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
105104ex 412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
10621, 30, 34, 35, 105wlogle 11775 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((♯‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((♯‘𝑅) + 1)))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
107106ralrimivva 3188 . . . . 5 (𝜑 → ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
108 dff13 7252 . . . . 5 (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 ↔ (𝐹:(1...((♯‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((♯‘𝑅) + 1))∀𝑦 ∈ (1...((♯‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
10916, 107, 108sylanbrc 583 . . . 4 (𝜑𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅)
110 f1domg 8991 . . . 4 (𝑅 ∈ Fin → (𝐹:(1...((♯‘𝑅) + 1))–1-1𝑅 → (1...((♯‘𝑅) + 1)) ≼ 𝑅))
1111, 109, 110sylc 65 . . 3 (𝜑 → (1...((♯‘𝑅) + 1)) ≼ 𝑅)
112 domnsym 9118 . . 3 ((1...((♯‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
113111, 112syl 17 . 2 (𝜑 → ¬ 𝑅 ≺ (1...((♯‘𝑅) + 1)))
11415, 113pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  cun 3929  wss 3931  {csn 4606   class class class wbr 5124  ccnv 5658  cima 5662   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  cdom 8962  csdm 8963  Fincfn 8964  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cn 12245  2c2 12300  0cn0 12506  ...cfz 13529  chash 14353  APcvdwa 16990   MonoAP cvdwm 16991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-vdwap 16993  df-vdwmc 16994
This theorem is referenced by:  vdwlem13  17018
  Copyright terms: Public domain W3C validator