Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbioo | Structured version Visualization version GIF version |
Description: An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
lbioo | ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 12821 | . . . 4 ⊢ (𝐴 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴 ∧ 𝐴 < 𝐵))) | |
2 | 1 | simprbi 500 | . . 3 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
3 | 2 | simpld 498 | . 2 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴) |
4 | 1 | simplbi 501 | . . . 4 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)) |
5 | 4 | simp3d 1141 | . . 3 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*) |
6 | xrltnr 12568 | . . 3 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → ¬ 𝐴 < 𝐴) |
8 | 3, 7 | pm2.65i 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ∧ w3a 1084 ∈ wcel 2111 class class class wbr 5036 (class class class)co 7156 ℝ*cxr 10725 < clt 10726 (,)cioo 12792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-pre-lttri 10662 ax-pre-lttrn 10663 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-ioo 12796 |
This theorem is referenced by: lhop1lem 24725 lhop1 24726 lhop 24728 iooinlbub 42539 lptioo1 42675 volico 43026 fourierdlem61 43210 |
Copyright terms: Public domain | W3C validator |