MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbioo Structured version   Visualization version   GIF version

Theorem lbioo 12823
Description: An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.)
Assertion
Ref Expression
lbioo ¬ 𝐴 ∈ (𝐴(,)𝐵)

Proof of Theorem lbioo
StepHypRef Expression
1 elioo3g 12821 . . . 4 (𝐴 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴𝐴 < 𝐵)))
21simprbi 500 . . 3 (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
32simpld 498 . 2 (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴)
41simplbi 501 . . . 4 (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 ∈ ℝ*))
54simp3d 1141 . . 3 (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*)
6 xrltnr 12568 . . 3 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
75, 6syl 17 . 2 (𝐴 ∈ (𝐴(,)𝐵) → ¬ 𝐴 < 𝐴)
83, 7pm2.65i 197 1 ¬ 𝐴 ∈ (𝐴(,)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399  w3a 1084  wcel 2111   class class class wbr 5036  (class class class)co 7156  *cxr 10725   < clt 10726  (,)cioo 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-pre-lttri 10662  ax-pre-lttrn 10663
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-ioo 12796
This theorem is referenced by:  lhop1lem  24725  lhop1  24726  lhop  24728  iooinlbub  42539  lptioo1  42675  volico  43026  fourierdlem61  43210
  Copyright terms: Public domain W3C validator