MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem6 Structured version   Visualization version   GIF version

Theorem prmreclem6 16868
Description: Lemma for prmrec 16869. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 16867 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
Assertion
Ref Expression
prmreclem6 ¬ seq1( + , 𝐹) ∈ dom ⇝
Distinct variable group:   𝑛,𝐹

Proof of Theorem prmreclem6
Dummy variables 𝑗 𝑘 𝑚 𝑝 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12812 . . . . . . . . 9 ℕ = (ℤ‘1)
2 1zzd 12540 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
3 nnrecre 12204 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 0re 11152 . . . . . . . . . . . 12 0 ∈ ℝ
6 ifcl 4530 . . . . . . . . . . . 12 (((1 / 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
74, 5, 6sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
8 prmrec.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
97, 8fmptd 7068 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
109ffvelcdmda 7038 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
111, 2, 10serfre 13972 . . . . . . . 8 (⊤ → seq1( + , 𝐹):ℕ⟶ℝ)
1211mptru 1547 . . . . . . 7 seq1( + , 𝐹):ℕ⟶ℝ
13 frn 6677 . . . . . . 7 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
1412, 13mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ⊆ ℝ)
15 1nn 12173 . . . . . . . 8 1 ∈ ℕ
1612fdmi 6681 . . . . . . . 8 dom seq1( + , 𝐹) = ℕ
1715, 16eleqtrri 2827 . . . . . . 7 1 ∈ dom seq1( + , 𝐹)
18 ne0i 4300 . . . . . . . 8 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
19 dm0rn0 5878 . . . . . . . . 9 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
2019necon3bii 2977 . . . . . . . 8 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
2118, 20sylib 218 . . . . . . 7 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
2217, 21mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ≠ ∅)
23 1zzd 12540 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → 1 ∈ ℤ)
24 climdm 15496 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2524biimpi 216 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2612a1i 11 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹):ℕ⟶ℝ)
2726ffvelcdmda 7038 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
281, 23, 25, 27climrecl 15525 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
29 simpr 484 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3025adantr 480 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
31 eleq1w 2811 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ))
32 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
3331, 32ifbieq1d 4509 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
34 prmnn 16620 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℕ)
3635nnrecred 12213 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑗 ∈ ℙ) → (1 / 𝑗) ∈ ℝ)
375a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ ¬ 𝑗 ∈ ℙ) → 0 ∈ ℝ)
3836, 37ifclda 4520 . . . . . . . . . . . . . . . 16 (⊤ → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
3938mptru 1547 . . . . . . . . . . . . . . 15 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ
4039elexi 3467 . . . . . . . . . . . . . 14 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ V
4133, 8, 40fvmpt 6950 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4241adantl 481 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4339a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
4442, 43eqeltrd 2828 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4544adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
46 nnrp 12939 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . . . 15 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
4847rpreccld 12981 . . . . . . . . . . . . . 14 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1 / 𝑗) ∈ ℝ+)
4948rpge0d 12975 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (1 / 𝑗))
50 0le0 12263 . . . . . . . . . . . . 13 0 ≤ 0
51 breq2 5106 . . . . . . . . . . . . . 14 ((1 / 𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ (1 / 𝑗) ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
52 breq2 5106 . . . . . . . . . . . . . 14 (0 = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
5351, 52ifboth 4524 . . . . . . . . . . . . 13 ((0 ≤ (1 / 𝑗) ∧ 0 ≤ 0) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5449, 50, 53sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5554, 42breqtrrd 5130 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
5655adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
571, 29, 30, 45, 56climserle 15605 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
5857ralrimiva 3125 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
59 brralrspcev 5162 . . . . . . . 8 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6028, 58, 59syl2anc 584 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
61 ffn 6670 . . . . . . . . 9 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
62 breq1 5105 . . . . . . . . . 10 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6362ralrn 7042 . . . . . . . . 9 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6412, 61, 63mp2b 10 . . . . . . . 8 (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6564rexbii 3076 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6660, 65sylibr 234 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
6714, 22, 66suprcld 12122 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
68 2rp 12932 . . . . . 6 2 ∈ ℝ+
69 rpreccl 12955 . . . . . 6 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7068, 69ax-mp 5 . . . . 5 (1 / 2) ∈ ℝ+
71 ltsubrp 12965 . . . . 5 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ+) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
7267, 70, 71sylancl 586 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
73 halfre 12371 . . . . . 6 (1 / 2) ∈ ℝ
74 resubcl 11462 . . . . . 6 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
7567, 73, 74sylancl 586 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
76 suprlub 12123 . . . . 5 (((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) ∧ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7714, 22, 66, 75, 76syl31anc 1375 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7872, 77mpbid 232 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦)
79 breq2 5106 . . . . 5 (𝑦 = (seq1( + , 𝐹)‘𝑘) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8079rexrn 7041 . . . 4 (seq1( + , 𝐹) Fn ℕ → (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8112, 61, 80mp2b 10 . . 3 (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
8278, 81sylib 218 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
83 2re 12236 . . . . . 6 2 ∈ ℝ
84 2nn 12235 . . . . . . . . 9 2 ∈ ℕ
85 nnmulcl 12186 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8684, 29, 85sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8786peano2nnd 12179 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
8887nnnn0d 12479 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ0)
89 reexpcl 14019 . . . . . 6 ((2 ∈ ℝ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9083, 88, 89sylancr 587 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9190ltnrd 11284 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1)))
9229adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → 𝑘 ∈ ℕ)
93 peano2nn 12174 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9493adantl 481 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9594nnnn0d 12479 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
96 nnexpcl 14015 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
9784, 95, 96sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℕ)
9897nnsqcld 14185 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
9998adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
100 breq1 5105 . . . . . . . . . . 11 (𝑝 = 𝑤 → (𝑝𝑟𝑤𝑟))
101100notbid 318 . . . . . . . . . 10 (𝑝 = 𝑤 → (¬ 𝑝𝑟 ↔ ¬ 𝑤𝑟))
102101cbvralvw 3213 . . . . . . . . 9 (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟)
103 breq2 5106 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑤𝑟𝑤𝑛))
104103notbid 318 . . . . . . . . . 10 (𝑟 = 𝑛 → (¬ 𝑤𝑟 ↔ ¬ 𝑤𝑛))
105104ralbidv 3156 . . . . . . . . 9 (𝑟 = 𝑛 → (∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
106102, 105bitrid 283 . . . . . . . 8 (𝑟 = 𝑛 → (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
107106cbvrabv 3413 . . . . . . 7 {𝑟 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟} = {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛}
108 simpll 766 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → seq1( + , 𝐹) ∈ dom ⇝ )
109 eleq1w 2811 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ))
110 oveq2 7377 . . . . . . . . . 10 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
111109, 110ifbieq1d 4509 . . . . . . . . 9 (𝑚 = 𝑗 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
112111cbvsumv 15638 . . . . . . . 8 Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)
113 simpr 484 . . . . . . . 8 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2))
114112, 113eqbrtrid 5137 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) < (1 / 2))
115 eqid 2729 . . . . . . 7 (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)}) = (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)})
1168, 92, 99, 107, 108, 114, 115prmreclem5 16867 . . . . . 6 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))))
117116ex 412 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2)))))
118 eqid 2729 . . . . . . . . 9 (ℤ‘(𝑘 + 1)) = (ℤ‘(𝑘 + 1))
11994nnzd 12532 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
120 eluznn 12853 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
12194, 120sylan 580 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
122121, 41syl 17 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12339a1i 11 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
124 simpl 482 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
12541adantl 481 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12639recni 11164 . . . . . . . . . . . . 13 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ
127126a1i 11 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
128125, 127eqeltrd 2828 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
1291, 94, 128iserex 15599 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ ))
130124, 129mpbid 232 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ )
131118, 119, 122, 123, 130isumrecl 15707 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
13273a1i 11 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1 / 2) ∈ ℝ)
133 elfznn 13490 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
134133adantl 481 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
135134, 41syl 17 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
13629, 1eleqtrdi 2838 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
137126a1i 11 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
138135, 136, 137fsumser 15672 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (seq1( + , 𝐹)‘𝑘))
139138, 27eqeltrd 2828 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
140131, 132, 139ltadd2d 11306 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
1411, 118, 94, 125, 127, 124isumsplit 15782 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
142 nncn 12170 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
143142adantl 481 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
144 ax-1cn 11102 . . . . . . . . . . . . 13 1 ∈ ℂ
145 pncan 11403 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
146143, 144, 145sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
147146oveq2d 7385 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
148147sumeq1d 15642 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
149148oveq1d 7384 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
150141, 149eqtrd 2764 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
151150breq1d 5112 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2)) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
152140, 151bitr4d 282 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
153 eqid 2729 . . . . . . . . . 10 seq1( + , 𝐹) = seq1( + , 𝐹)
1541, 153, 23, 42, 43, 54, 60isumsup 15789 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
155154, 67eqeltrd 2828 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
156155adantr 480 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
157156, 132, 139ltsubaddd 11750 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
158154adantr 480 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
159158oveq1d 7384 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) = (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)))
160159, 138breq12d 5115 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
161152, 157, 1603bitr2d 307 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
162 2cn 12237 . . . . . . . . . . . . 13 2 ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
164144a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
165163, 143, 164adddid 11174 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
16694nncnd 12178 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
167 mulcom 11130 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
168166, 162, 167sylancl 586 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
16986nncnd 12178 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
170169, 164, 164addassd 11172 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1)))
1711442timesi 12295 . . . . . . . . . . . . 13 (2 · 1) = (1 + 1)
172171oveq2i 7380 . . . . . . . . . . . 12 ((2 · 𝑘) + (2 · 1)) = ((2 · 𝑘) + (1 + 1))
173170, 172eqtr4di 2782 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (2 · 1)))
174165, 168, 1733eqtr4d 2774 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (((2 · 𝑘) + 1) + 1))
175174oveq2d 7385 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = (2↑(((2 · 𝑘) + 1) + 1)))
176 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
177176a1i 11 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℕ0)
178163, 177, 95expmuld 14090 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = ((2↑(𝑘 + 1))↑2))
179 expp1 14009 . . . . . . . . . 10 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
180162, 88, 179sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
181175, 178, 1803eqtr3d 2772 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) = ((2↑((2 · 𝑘) + 1)) · 2))
182181oveq1d 7384 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (((2↑((2 · 𝑘) + 1)) · 2) / 2))
183 expcl 14020 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
184162, 88, 183sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
185 2ne0 12266 . . . . . . . . 9 2 ≠ 0
186 divcan4 11840 . . . . . . . . 9 (((2↑((2 · 𝑘) + 1)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
187162, 185, 186mp3an23 1455 . . . . . . . 8 ((2↑((2 · 𝑘) + 1)) ∈ ℂ → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
188184, 187syl 17 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
189182, 188eqtrd 2764 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (2↑((2 · 𝑘) + 1)))
190 nnnn0 12425 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
191190adantl 481 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
192163, 95, 191expaddd 14089 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + (𝑘 + 1))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
1931432timesd 12401 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
194193oveq1d 7384 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = ((𝑘 + 𝑘) + 1))
195143, 143, 164addassd 11172 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
196194, 195eqtrd 2764 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
197196oveq2d 7385 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) = (2↑(𝑘 + (𝑘 + 1))))
19897nnrpd 12969 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℝ+)
199198rprege0d 12978 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))))
200 sqrtsq 15211 . . . . . . . . 9 (((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
201199, 200syl 17 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
202201oveq2d 7385 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
203192, 197, 2023eqtr4rd 2775 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = (2↑((2 · 𝑘) + 1)))
204189, 203breq12d 5115 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) ↔ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
205117, 161, 2043imtr3d 293 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘) → (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
20691, 205mtod 198 . . 3 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
207206nrexdv 3128 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ¬ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
20882, 207pm2.65i 194 1 ¬ seq1( + , 𝐹) ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  cdif 3908  wss 3911  c0 4292  ifcif 4484   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cuz 12769  +crp 12927  ...cfz 13444  seqcseq 13942  cexp 14002  csqrt 15175  cli 15426  Σcsu 15628  cdvds 16198  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784
This theorem is referenced by:  prmrec  16869
  Copyright terms: Public domain W3C validator