MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem6 Structured version   Visualization version   GIF version

Theorem prmreclem6 16833
Description: Lemma for prmrec 16834. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 16832 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
Assertion
Ref Expression
prmreclem6 ¬ seq1( + , 𝐹) ∈ dom ⇝
Distinct variable group:   𝑛,𝐹

Proof of Theorem prmreclem6
Dummy variables 𝑗 𝑘 𝑚 𝑝 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12778 . . . . . . . . 9 ℕ = (ℤ‘1)
2 1zzd 12506 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
3 nnrecre 12170 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 0re 11117 . . . . . . . . . . . 12 0 ∈ ℝ
6 ifcl 4522 . . . . . . . . . . . 12 (((1 / 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
74, 5, 6sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
8 prmrec.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
97, 8fmptd 7048 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
109ffvelcdmda 7018 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
111, 2, 10serfre 13938 . . . . . . . 8 (⊤ → seq1( + , 𝐹):ℕ⟶ℝ)
1211mptru 1547 . . . . . . 7 seq1( + , 𝐹):ℕ⟶ℝ
13 frn 6659 . . . . . . 7 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
1412, 13mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ⊆ ℝ)
15 1nn 12139 . . . . . . . 8 1 ∈ ℕ
1612fdmi 6663 . . . . . . . 8 dom seq1( + , 𝐹) = ℕ
1715, 16eleqtrri 2827 . . . . . . 7 1 ∈ dom seq1( + , 𝐹)
18 ne0i 4292 . . . . . . . 8 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
19 dm0rn0 5867 . . . . . . . . 9 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
2019necon3bii 2977 . . . . . . . 8 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
2118, 20sylib 218 . . . . . . 7 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
2217, 21mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ≠ ∅)
23 1zzd 12506 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → 1 ∈ ℤ)
24 climdm 15461 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2524biimpi 216 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2612a1i 11 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹):ℕ⟶ℝ)
2726ffvelcdmda 7018 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
281, 23, 25, 27climrecl 15490 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
29 simpr 484 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3025adantr 480 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
31 eleq1w 2811 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ))
32 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
3331, 32ifbieq1d 4501 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
34 prmnn 16585 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℕ)
3635nnrecred 12179 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑗 ∈ ℙ) → (1 / 𝑗) ∈ ℝ)
375a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ ¬ 𝑗 ∈ ℙ) → 0 ∈ ℝ)
3836, 37ifclda 4512 . . . . . . . . . . . . . . . 16 (⊤ → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
3938mptru 1547 . . . . . . . . . . . . . . 15 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ
4039elexi 3459 . . . . . . . . . . . . . 14 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ V
4133, 8, 40fvmpt 6930 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4241adantl 481 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4339a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
4442, 43eqeltrd 2828 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4544adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
46 nnrp 12905 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . . . 15 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
4847rpreccld 12947 . . . . . . . . . . . . . 14 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1 / 𝑗) ∈ ℝ+)
4948rpge0d 12941 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (1 / 𝑗))
50 0le0 12229 . . . . . . . . . . . . 13 0 ≤ 0
51 breq2 5096 . . . . . . . . . . . . . 14 ((1 / 𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ (1 / 𝑗) ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
52 breq2 5096 . . . . . . . . . . . . . 14 (0 = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
5351, 52ifboth 4516 . . . . . . . . . . . . 13 ((0 ≤ (1 / 𝑗) ∧ 0 ≤ 0) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5449, 50, 53sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5554, 42breqtrrd 5120 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
5655adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
571, 29, 30, 45, 56climserle 15570 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
5857ralrimiva 3121 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
59 brralrspcev 5152 . . . . . . . 8 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6028, 58, 59syl2anc 584 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
61 ffn 6652 . . . . . . . . 9 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
62 breq1 5095 . . . . . . . . . 10 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6362ralrn 7022 . . . . . . . . 9 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6412, 61, 63mp2b 10 . . . . . . . 8 (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6564rexbii 3076 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6660, 65sylibr 234 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
6714, 22, 66suprcld 12088 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
68 2rp 12898 . . . . . 6 2 ∈ ℝ+
69 rpreccl 12921 . . . . . 6 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7068, 69ax-mp 5 . . . . 5 (1 / 2) ∈ ℝ+
71 ltsubrp 12931 . . . . 5 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ+) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
7267, 70, 71sylancl 586 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
73 halfre 12337 . . . . . 6 (1 / 2) ∈ ℝ
74 resubcl 11428 . . . . . 6 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
7567, 73, 74sylancl 586 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
76 suprlub 12089 . . . . 5 (((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) ∧ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7714, 22, 66, 75, 76syl31anc 1375 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7872, 77mpbid 232 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦)
79 breq2 5096 . . . . 5 (𝑦 = (seq1( + , 𝐹)‘𝑘) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8079rexrn 7021 . . . 4 (seq1( + , 𝐹) Fn ℕ → (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8112, 61, 80mp2b 10 . . 3 (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
8278, 81sylib 218 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
83 2re 12202 . . . . . 6 2 ∈ ℝ
84 2nn 12201 . . . . . . . . 9 2 ∈ ℕ
85 nnmulcl 12152 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8684, 29, 85sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8786peano2nnd 12145 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
8887nnnn0d 12445 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ0)
89 reexpcl 13985 . . . . . 6 ((2 ∈ ℝ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9083, 88, 89sylancr 587 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9190ltnrd 11250 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1)))
9229adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → 𝑘 ∈ ℕ)
93 peano2nn 12140 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9493adantl 481 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9594nnnn0d 12445 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
96 nnexpcl 13981 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
9784, 95, 96sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℕ)
9897nnsqcld 14151 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
9998adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
100 breq1 5095 . . . . . . . . . . 11 (𝑝 = 𝑤 → (𝑝𝑟𝑤𝑟))
101100notbid 318 . . . . . . . . . 10 (𝑝 = 𝑤 → (¬ 𝑝𝑟 ↔ ¬ 𝑤𝑟))
102101cbvralvw 3207 . . . . . . . . 9 (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟)
103 breq2 5096 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑤𝑟𝑤𝑛))
104103notbid 318 . . . . . . . . . 10 (𝑟 = 𝑛 → (¬ 𝑤𝑟 ↔ ¬ 𝑤𝑛))
105104ralbidv 3152 . . . . . . . . 9 (𝑟 = 𝑛 → (∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
106102, 105bitrid 283 . . . . . . . 8 (𝑟 = 𝑛 → (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
107106cbvrabv 3405 . . . . . . 7 {𝑟 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟} = {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛}
108 simpll 766 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → seq1( + , 𝐹) ∈ dom ⇝ )
109 eleq1w 2811 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ))
110 oveq2 7357 . . . . . . . . . 10 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
111109, 110ifbieq1d 4501 . . . . . . . . 9 (𝑚 = 𝑗 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
112111cbvsumv 15603 . . . . . . . 8 Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)
113 simpr 484 . . . . . . . 8 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2))
114112, 113eqbrtrid 5127 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) < (1 / 2))
115 eqid 2729 . . . . . . 7 (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)}) = (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)})
1168, 92, 99, 107, 108, 114, 115prmreclem5 16832 . . . . . 6 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))))
117116ex 412 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2)))))
118 eqid 2729 . . . . . . . . 9 (ℤ‘(𝑘 + 1)) = (ℤ‘(𝑘 + 1))
11994nnzd 12498 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
120 eluznn 12819 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
12194, 120sylan 580 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
122121, 41syl 17 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12339a1i 11 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
124 simpl 482 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
12541adantl 481 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12639recni 11129 . . . . . . . . . . . . 13 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ
127126a1i 11 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
128125, 127eqeltrd 2828 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
1291, 94, 128iserex 15564 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ ))
130124, 129mpbid 232 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ )
131118, 119, 122, 123, 130isumrecl 15672 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
13273a1i 11 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1 / 2) ∈ ℝ)
133 elfznn 13456 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
134133adantl 481 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
135134, 41syl 17 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
13629, 1eleqtrdi 2838 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
137126a1i 11 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
138135, 136, 137fsumser 15637 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (seq1( + , 𝐹)‘𝑘))
139138, 27eqeltrd 2828 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
140131, 132, 139ltadd2d 11272 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
1411, 118, 94, 125, 127, 124isumsplit 15747 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
142 nncn 12136 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
143142adantl 481 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
144 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
145 pncan 11369 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
146143, 144, 145sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
147146oveq2d 7365 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
148147sumeq1d 15607 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
149148oveq1d 7364 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
150141, 149eqtrd 2764 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
151150breq1d 5102 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2)) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
152140, 151bitr4d 282 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
153 eqid 2729 . . . . . . . . . 10 seq1( + , 𝐹) = seq1( + , 𝐹)
1541, 153, 23, 42, 43, 54, 60isumsup 15754 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
155154, 67eqeltrd 2828 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
156155adantr 480 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
157156, 132, 139ltsubaddd 11716 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
158154adantr 480 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
159158oveq1d 7364 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) = (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)))
160159, 138breq12d 5105 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
161152, 157, 1603bitr2d 307 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
162 2cn 12203 . . . . . . . . . . . . 13 2 ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
164144a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
165163, 143, 164adddid 11139 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
16694nncnd 12144 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
167 mulcom 11095 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
168166, 162, 167sylancl 586 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
16986nncnd 12144 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
170169, 164, 164addassd 11137 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1)))
1711442timesi 12261 . . . . . . . . . . . . 13 (2 · 1) = (1 + 1)
172171oveq2i 7360 . . . . . . . . . . . 12 ((2 · 𝑘) + (2 · 1)) = ((2 · 𝑘) + (1 + 1))
173170, 172eqtr4di 2782 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (2 · 1)))
174165, 168, 1733eqtr4d 2774 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (((2 · 𝑘) + 1) + 1))
175174oveq2d 7365 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = (2↑(((2 · 𝑘) + 1) + 1)))
176 2nn0 12401 . . . . . . . . . . 11 2 ∈ ℕ0
177176a1i 11 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℕ0)
178163, 177, 95expmuld 14056 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = ((2↑(𝑘 + 1))↑2))
179 expp1 13975 . . . . . . . . . 10 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
180162, 88, 179sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
181175, 178, 1803eqtr3d 2772 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) = ((2↑((2 · 𝑘) + 1)) · 2))
182181oveq1d 7364 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (((2↑((2 · 𝑘) + 1)) · 2) / 2))
183 expcl 13986 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
184162, 88, 183sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
185 2ne0 12232 . . . . . . . . 9 2 ≠ 0
186 divcan4 11806 . . . . . . . . 9 (((2↑((2 · 𝑘) + 1)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
187162, 185, 186mp3an23 1455 . . . . . . . 8 ((2↑((2 · 𝑘) + 1)) ∈ ℂ → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
188184, 187syl 17 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
189182, 188eqtrd 2764 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (2↑((2 · 𝑘) + 1)))
190 nnnn0 12391 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
191190adantl 481 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
192163, 95, 191expaddd 14055 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + (𝑘 + 1))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
1931432timesd 12367 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
194193oveq1d 7364 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = ((𝑘 + 𝑘) + 1))
195143, 143, 164addassd 11137 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
196194, 195eqtrd 2764 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
197196oveq2d 7365 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) = (2↑(𝑘 + (𝑘 + 1))))
19897nnrpd 12935 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℝ+)
199198rprege0d 12944 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))))
200 sqrtsq 15176 . . . . . . . . 9 (((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
201199, 200syl 17 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
202201oveq2d 7365 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
203192, 197, 2023eqtr4rd 2775 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = (2↑((2 · 𝑘) + 1)))
204189, 203breq12d 5105 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) ↔ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
205117, 161, 2043imtr3d 293 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘) → (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
20691, 205mtod 198 . . 3 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
207206nrexdv 3124 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ¬ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
20882, 207pm2.65i 194 1 ¬ seq1( + , 𝐹) ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  cdif 3900  wss 3903  c0 4284  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cuz 12735  +crp 12893  ...cfz 13410  seqcseq 13908  cexp 13968  csqrt 15140  cli 15391  Σcsu 15593  cdvds 16163  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749
This theorem is referenced by:  prmrec  16834
  Copyright terms: Public domain W3C validator