MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem6 Structured version   Visualization version   GIF version

Theorem prmreclem6 16960
Description: Lemma for prmrec 16961. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 16959 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
Assertion
Ref Expression
prmreclem6 ¬ seq1( + , 𝐹) ∈ dom ⇝
Distinct variable group:   𝑛,𝐹

Proof of Theorem prmreclem6
Dummy variables 𝑗 𝑘 𝑚 𝑝 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12922 . . . . . . . . 9 ℕ = (ℤ‘1)
2 1zzd 12650 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
3 nnrecre 12309 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 0re 11264 . . . . . . . . . . . 12 0 ∈ ℝ
6 ifcl 4570 . . . . . . . . . . . 12 (((1 / 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
74, 5, 6sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
8 prmrec.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
97, 8fmptd 7133 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
109ffvelcdmda 7103 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
111, 2, 10serfre 14073 . . . . . . . 8 (⊤ → seq1( + , 𝐹):ℕ⟶ℝ)
1211mptru 1546 . . . . . . 7 seq1( + , 𝐹):ℕ⟶ℝ
13 frn 6742 . . . . . . 7 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
1412, 13mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ⊆ ℝ)
15 1nn 12278 . . . . . . . 8 1 ∈ ℕ
1612fdmi 6746 . . . . . . . 8 dom seq1( + , 𝐹) = ℕ
1715, 16eleqtrri 2839 . . . . . . 7 1 ∈ dom seq1( + , 𝐹)
18 ne0i 4340 . . . . . . . 8 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
19 dm0rn0 5934 . . . . . . . . 9 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
2019necon3bii 2992 . . . . . . . 8 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
2118, 20sylib 218 . . . . . . 7 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
2217, 21mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ≠ ∅)
23 1zzd 12650 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → 1 ∈ ℤ)
24 climdm 15591 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2524biimpi 216 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2612a1i 11 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹):ℕ⟶ℝ)
2726ffvelcdmda 7103 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
281, 23, 25, 27climrecl 15620 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
29 simpr 484 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3025adantr 480 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
31 eleq1w 2823 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ))
32 oveq2 7440 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
3331, 32ifbieq1d 4549 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
34 prmnn 16712 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℕ)
3635nnrecred 12318 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑗 ∈ ℙ) → (1 / 𝑗) ∈ ℝ)
375a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ ¬ 𝑗 ∈ ℙ) → 0 ∈ ℝ)
3836, 37ifclda 4560 . . . . . . . . . . . . . . . 16 (⊤ → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
3938mptru 1546 . . . . . . . . . . . . . . 15 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ
4039elexi 3502 . . . . . . . . . . . . . 14 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ V
4133, 8, 40fvmpt 7015 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4241adantl 481 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4339a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
4442, 43eqeltrd 2840 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4544adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
46 nnrp 13047 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . . . 15 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
4847rpreccld 13088 . . . . . . . . . . . . . 14 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1 / 𝑗) ∈ ℝ+)
4948rpge0d 13082 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (1 / 𝑗))
50 0le0 12368 . . . . . . . . . . . . 13 0 ≤ 0
51 breq2 5146 . . . . . . . . . . . . . 14 ((1 / 𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ (1 / 𝑗) ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
52 breq2 5146 . . . . . . . . . . . . . 14 (0 = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
5351, 52ifboth 4564 . . . . . . . . . . . . 13 ((0 ≤ (1 / 𝑗) ∧ 0 ≤ 0) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5449, 50, 53sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5554, 42breqtrrd 5170 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
5655adantlr 715 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
571, 29, 30, 45, 56climserle 15700 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
5857ralrimiva 3145 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
59 brralrspcev 5202 . . . . . . . 8 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6028, 58, 59syl2anc 584 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
61 ffn 6735 . . . . . . . . 9 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
62 breq1 5145 . . . . . . . . . 10 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6362ralrn 7107 . . . . . . . . 9 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6412, 61, 63mp2b 10 . . . . . . . 8 (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6564rexbii 3093 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6660, 65sylibr 234 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
6714, 22, 66suprcld 12232 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
68 2rp 13040 . . . . . 6 2 ∈ ℝ+
69 rpreccl 13062 . . . . . 6 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7068, 69ax-mp 5 . . . . 5 (1 / 2) ∈ ℝ+
71 ltsubrp 13072 . . . . 5 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ+) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
7267, 70, 71sylancl 586 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
73 halfre 12481 . . . . . 6 (1 / 2) ∈ ℝ
74 resubcl 11574 . . . . . 6 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
7567, 73, 74sylancl 586 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
76 suprlub 12233 . . . . 5 (((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) ∧ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7714, 22, 66, 75, 76syl31anc 1374 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7872, 77mpbid 232 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦)
79 breq2 5146 . . . . 5 (𝑦 = (seq1( + , 𝐹)‘𝑘) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8079rexrn 7106 . . . 4 (seq1( + , 𝐹) Fn ℕ → (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8112, 61, 80mp2b 10 . . 3 (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
8278, 81sylib 218 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
83 2re 12341 . . . . . 6 2 ∈ ℝ
84 2nn 12340 . . . . . . . . 9 2 ∈ ℕ
85 nnmulcl 12291 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8684, 29, 85sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8786peano2nnd 12284 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
8887nnnn0d 12589 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ0)
89 reexpcl 14120 . . . . . 6 ((2 ∈ ℝ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9083, 88, 89sylancr 587 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9190ltnrd 11396 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1)))
9229adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → 𝑘 ∈ ℕ)
93 peano2nn 12279 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9493adantl 481 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9594nnnn0d 12589 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
96 nnexpcl 14116 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
9784, 95, 96sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℕ)
9897nnsqcld 14284 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
9998adantr 480 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
100 breq1 5145 . . . . . . . . . . 11 (𝑝 = 𝑤 → (𝑝𝑟𝑤𝑟))
101100notbid 318 . . . . . . . . . 10 (𝑝 = 𝑤 → (¬ 𝑝𝑟 ↔ ¬ 𝑤𝑟))
102101cbvralvw 3236 . . . . . . . . 9 (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟)
103 breq2 5146 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑤𝑟𝑤𝑛))
104103notbid 318 . . . . . . . . . 10 (𝑟 = 𝑛 → (¬ 𝑤𝑟 ↔ ¬ 𝑤𝑛))
105104ralbidv 3177 . . . . . . . . 9 (𝑟 = 𝑛 → (∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
106102, 105bitrid 283 . . . . . . . 8 (𝑟 = 𝑛 → (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
107106cbvrabv 3446 . . . . . . 7 {𝑟 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟} = {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛}
108 simpll 766 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → seq1( + , 𝐹) ∈ dom ⇝ )
109 eleq1w 2823 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ))
110 oveq2 7440 . . . . . . . . . 10 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
111109, 110ifbieq1d 4549 . . . . . . . . 9 (𝑚 = 𝑗 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
112111cbvsumv 15733 . . . . . . . 8 Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)
113 simpr 484 . . . . . . . 8 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2))
114112, 113eqbrtrid 5177 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) < (1 / 2))
115 eqid 2736 . . . . . . 7 (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)}) = (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)})
1168, 92, 99, 107, 108, 114, 115prmreclem5 16959 . . . . . 6 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))))
117116ex 412 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2)))))
118 eqid 2736 . . . . . . . . 9 (ℤ‘(𝑘 + 1)) = (ℤ‘(𝑘 + 1))
11994nnzd 12642 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
120 eluznn 12961 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
12194, 120sylan 580 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
122121, 41syl 17 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12339a1i 11 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
124 simpl 482 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
12541adantl 481 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12639recni 11276 . . . . . . . . . . . . 13 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ
127126a1i 11 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
128125, 127eqeltrd 2840 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
1291, 94, 128iserex 15694 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ ))
130124, 129mpbid 232 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ )
131118, 119, 122, 123, 130isumrecl 15802 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
13273a1i 11 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1 / 2) ∈ ℝ)
133 elfznn 13594 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
134133adantl 481 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
135134, 41syl 17 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
13629, 1eleqtrdi 2850 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
137126a1i 11 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
138135, 136, 137fsumser 15767 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (seq1( + , 𝐹)‘𝑘))
139138, 27eqeltrd 2840 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
140131, 132, 139ltadd2d 11418 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
1411, 118, 94, 125, 127, 124isumsplit 15877 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
142 nncn 12275 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
143142adantl 481 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
144 ax-1cn 11214 . . . . . . . . . . . . 13 1 ∈ ℂ
145 pncan 11515 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
146143, 144, 145sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
147146oveq2d 7448 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
148147sumeq1d 15737 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
149148oveq1d 7447 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
150141, 149eqtrd 2776 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
151150breq1d 5152 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2)) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
152140, 151bitr4d 282 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
153 eqid 2736 . . . . . . . . . 10 seq1( + , 𝐹) = seq1( + , 𝐹)
1541, 153, 23, 42, 43, 54, 60isumsup 15884 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
155154, 67eqeltrd 2840 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
156155adantr 480 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
157156, 132, 139ltsubaddd 11860 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
158154adantr 480 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
159158oveq1d 7447 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) = (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)))
160159, 138breq12d 5155 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
161152, 157, 1603bitr2d 307 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
162 2cn 12342 . . . . . . . . . . . . 13 2 ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
164144a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
165163, 143, 164adddid 11286 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
16694nncnd 12283 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
167 mulcom 11242 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
168166, 162, 167sylancl 586 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
16986nncnd 12283 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
170169, 164, 164addassd 11284 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1)))
1711442timesi 12405 . . . . . . . . . . . . 13 (2 · 1) = (1 + 1)
172171oveq2i 7443 . . . . . . . . . . . 12 ((2 · 𝑘) + (2 · 1)) = ((2 · 𝑘) + (1 + 1))
173170, 172eqtr4di 2794 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (2 · 1)))
174165, 168, 1733eqtr4d 2786 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (((2 · 𝑘) + 1) + 1))
175174oveq2d 7448 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = (2↑(((2 · 𝑘) + 1) + 1)))
176 2nn0 12545 . . . . . . . . . . 11 2 ∈ ℕ0
177176a1i 11 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℕ0)
178163, 177, 95expmuld 14190 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = ((2↑(𝑘 + 1))↑2))
179 expp1 14110 . . . . . . . . . 10 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
180162, 88, 179sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
181175, 178, 1803eqtr3d 2784 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) = ((2↑((2 · 𝑘) + 1)) · 2))
182181oveq1d 7447 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (((2↑((2 · 𝑘) + 1)) · 2) / 2))
183 expcl 14121 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
184162, 88, 183sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
185 2ne0 12371 . . . . . . . . 9 2 ≠ 0
186 divcan4 11950 . . . . . . . . 9 (((2↑((2 · 𝑘) + 1)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
187162, 185, 186mp3an23 1454 . . . . . . . 8 ((2↑((2 · 𝑘) + 1)) ∈ ℂ → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
188184, 187syl 17 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
189182, 188eqtrd 2776 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (2↑((2 · 𝑘) + 1)))
190 nnnn0 12535 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
191190adantl 481 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
192163, 95, 191expaddd 14189 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + (𝑘 + 1))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
1931432timesd 12511 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
194193oveq1d 7447 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = ((𝑘 + 𝑘) + 1))
195143, 143, 164addassd 11284 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
196194, 195eqtrd 2776 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
197196oveq2d 7448 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) = (2↑(𝑘 + (𝑘 + 1))))
19897nnrpd 13076 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℝ+)
199198rprege0d 13085 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))))
200 sqrtsq 15309 . . . . . . . . 9 (((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
201199, 200syl 17 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
202201oveq2d 7448 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
203192, 197, 2023eqtr4rd 2787 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = (2↑((2 · 𝑘) + 1)))
204189, 203breq12d 5155 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) ↔ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
205117, 161, 2043imtr3d 293 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘) → (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
20691, 205mtod 198 . . 3 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
207206nrexdv 3148 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ¬ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
20882, 207pm2.65i 194 1 ¬ seq1( + , 𝐹) ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1539  wtru 1540  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  cdif 3947  wss 3950  c0 4332  ifcif 4524   class class class wbr 5142  cmpt 5224  dom cdm 5684  ran crn 5685   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  supcsup 9481  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  cuz 12879  +crp 13035  ...cfz 13548  seqcseq 14043  cexp 14103  csqrt 15273  cli 15521  Σcsu 15723  cdvds 16291  cprime 16709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876
This theorem is referenced by:  prmrec  16961
  Copyright terms: Public domain W3C validator