MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem6 Structured version   Visualization version   GIF version

Theorem prmreclem6 16252
Description: Lemma for prmrec 16253. If the series 𝐹 was convergent, there would be some 𝑘 such that the sum starting from 𝑘 + 1 sums to less than 1 / 2; this is a sufficient hypothesis for prmreclem5 16251 to produce the contradictory bound 𝑁 / 2 < (2↑𝑘)√𝑁, which is false for 𝑁 = 2↑(2𝑘 + 2). (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypothesis
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
Assertion
Ref Expression
prmreclem6 ¬ seq1( + , 𝐹) ∈ dom ⇝
Distinct variable group:   𝑛,𝐹

Proof of Theorem prmreclem6
Dummy variables 𝑗 𝑘 𝑚 𝑝 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12275 . . . . . . . . 9 ℕ = (ℤ‘1)
2 1zzd 12007 . . . . . . . . 9 (⊤ → 1 ∈ ℤ)
3 nnrecre 11673 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 0re 10637 . . . . . . . . . . . 12 0 ∈ ℝ
6 ifcl 4514 . . . . . . . . . . . 12 (((1 / 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
74, 5, 6sylancl 586 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) ∈ ℝ)
8 prmrec.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
97, 8fmptd 6876 . . . . . . . . . 10 (⊤ → 𝐹:ℕ⟶ℝ)
109ffvelrnda 6849 . . . . . . . . 9 ((⊤ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
111, 2, 10serfre 13394 . . . . . . . 8 (⊤ → seq1( + , 𝐹):ℕ⟶ℝ)
1211mptru 1537 . . . . . . 7 seq1( + , 𝐹):ℕ⟶ℝ
13 frn 6519 . . . . . . 7 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
1412, 13mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ⊆ ℝ)
15 1nn 11643 . . . . . . . 8 1 ∈ ℕ
1612fdmi 6523 . . . . . . . 8 dom seq1( + , 𝐹) = ℕ
1715, 16eleqtrri 2917 . . . . . . 7 1 ∈ dom seq1( + , 𝐹)
18 ne0i 4304 . . . . . . . 8 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
19 dm0rn0 5794 . . . . . . . . 9 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
2019necon3bii 3073 . . . . . . . 8 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
2118, 20sylib 219 . . . . . . 7 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
2217, 21mp1i 13 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ran seq1( + , 𝐹) ≠ ∅)
23 1zzd 12007 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → 1 ∈ ℤ)
24 climdm 14906 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2524biimpi 217 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2612a1i 11 . . . . . . . . . 10 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹):ℕ⟶ℝ)
2726ffvelrnda 6849 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
281, 23, 25, 27climrecl 14935 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
29 simpr 485 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3025adantr 481 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
31 eleq1w 2900 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ))
32 oveq2 7158 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
3331, 32ifbieq1d 4493 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
34 prmnn 16013 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
3534adantl 482 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℕ)
3635nnrecred 11682 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑗 ∈ ℙ) → (1 / 𝑗) ∈ ℝ)
375a1i 11 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ ¬ 𝑗 ∈ ℙ) → 0 ∈ ℝ)
3836, 37ifclda 4504 . . . . . . . . . . . . . . . 16 (⊤ → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
3938mptru 1537 . . . . . . . . . . . . . . 15 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ
4039elexi 3519 . . . . . . . . . . . . . 14 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ V
4133, 8, 40fvmpt 6767 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4241adantl 482 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
4339a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
4442, 43eqeltrd 2918 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4544adantlr 711 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
46 nnrp 12395 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
4746adantl 482 . . . . . . . . . . . . . . 15 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
4847rpreccld 12436 . . . . . . . . . . . . . 14 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1 / 𝑗) ∈ ℝ+)
4948rpge0d 12430 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (1 / 𝑗))
50 0le0 11732 . . . . . . . . . . . . 13 0 ≤ 0
51 breq2 5067 . . . . . . . . . . . . . 14 ((1 / 𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ (1 / 𝑗) ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
52 breq2 5067 . . . . . . . . . . . . . 14 (0 = if(𝑗 ∈ ℙ, (1 / 𝑗), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
5351, 52ifboth 4508 . . . . . . . . . . . . 13 ((0 ≤ (1 / 𝑗) ∧ 0 ≤ 0) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5449, 50, 53sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
5554, 42breqtrrd 5091 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
5655adantlr 711 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
571, 29, 30, 45, 56climserle 15014 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
5857ralrimiva 3187 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
59 brralrspcev 5123 . . . . . . . 8 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6028, 58, 59syl2anc 584 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
61 ffn 6513 . . . . . . . . 9 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
62 breq1 5066 . . . . . . . . . 10 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6362ralrn 6852 . . . . . . . . 9 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
6412, 61, 63mp2b 10 . . . . . . . 8 (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6564rexbii 3252 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
6660, 65sylibr 235 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
6714, 22, 66suprcld 11598 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
68 2rp 12389 . . . . . 6 2 ∈ ℝ+
69 rpreccl 12410 . . . . . 6 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7068, 69ax-mp 5 . . . . 5 (1 / 2) ∈ ℝ+
71 ltsubrp 12420 . . . . 5 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ+) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
7267, 70, 71sylancl 586 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ))
73 halfre 11845 . . . . . 6 (1 / 2) ∈ ℝ
74 resubcl 10944 . . . . . 6 ((sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
7567, 73, 74sylancl 586 . . . . 5 (seq1( + , 𝐹) ∈ dom ⇝ → (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ)
76 suprlub 11599 . . . . 5 (((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) ∧ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) ∈ ℝ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7714, 22, 66, 75, 76syl31anc 1367 . . . 4 (seq1( + , 𝐹) ∈ dom ⇝ → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < sup(ran seq1( + , 𝐹), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦))
7872, 77mpbid 233 . . 3 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦)
79 breq2 5067 . . . . 5 (𝑦 = (seq1( + , 𝐹)‘𝑘) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8079rexrn 6851 . . . 4 (seq1( + , 𝐹) Fn ℕ → (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
8112, 61, 80mp2b 10 . . 3 (∃𝑦 ∈ ran seq1( + , 𝐹)(sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < 𝑦 ↔ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
8278, 81sylib 219 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
83 2re 11705 . . . . . 6 2 ∈ ℝ
84 2nn 11704 . . . . . . . . 9 2 ∈ ℕ
85 nnmulcl 11655 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8684, 29, 85sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
8786peano2nnd 11649 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
8887nnnn0d 11949 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ0)
89 reexpcl 13441 . . . . . 6 ((2 ∈ ℝ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9083, 88, 89sylancr 587 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℝ)
9190ltnrd 10768 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1)))
9229adantr 481 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → 𝑘 ∈ ℕ)
93 peano2nn 11644 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9493adantl 482 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
9594nnnn0d 11949 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ0)
96 nnexpcl 13437 . . . . . . . . . 10 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
9784, 95, 96sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℕ)
9897nnsqcld 13600 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
9998adantr 481 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → ((2↑(𝑘 + 1))↑2) ∈ ℕ)
100 breq1 5066 . . . . . . . . . . 11 (𝑝 = 𝑤 → (𝑝𝑟𝑤𝑟))
101100notbid 319 . . . . . . . . . 10 (𝑝 = 𝑤 → (¬ 𝑝𝑟 ↔ ¬ 𝑤𝑟))
102101cbvralvw 3455 . . . . . . . . 9 (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟)
103 breq2 5067 . . . . . . . . . . 11 (𝑟 = 𝑛 → (𝑤𝑟𝑤𝑛))
104103notbid 319 . . . . . . . . . 10 (𝑟 = 𝑛 → (¬ 𝑤𝑟 ↔ ¬ 𝑤𝑛))
105104ralbidv 3202 . . . . . . . . 9 (𝑟 = 𝑛 → (∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
106102, 105syl5bb 284 . . . . . . . 8 (𝑟 = 𝑛 → (∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟 ↔ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛))
107106cbvrabv 3497 . . . . . . 7 {𝑟 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑝𝑟} = {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ ∀𝑤 ∈ (ℙ ∖ (1...𝑘)) ¬ 𝑤𝑛}
108 simpll 763 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → seq1( + , 𝐹) ∈ dom ⇝ )
109 eleq1w 2900 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ))
110 oveq2 7158 . . . . . . . . . 10 (𝑚 = 𝑗 → (1 / 𝑚) = (1 / 𝑗))
111109, 110ifbieq1d 4493 . . . . . . . . 9 (𝑚 = 𝑗 → if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
112111cbvsumv 15048 . . . . . . . 8 Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) = Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)
113 simpr 485 . . . . . . . 8 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2))
114112, 113eqbrtrid 5098 . . . . . . 7 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → Σ𝑚 ∈ (ℤ‘(𝑘 + 1))if(𝑚 ∈ ℙ, (1 / 𝑚), 0) < (1 / 2))
115 eqid 2826 . . . . . . 7 (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)}) = (𝑤 ∈ ℕ ↦ {𝑛 ∈ (1...((2↑(𝑘 + 1))↑2)) ∣ (𝑤 ∈ ℙ ∧ 𝑤𝑛)})
1168, 92, 99, 107, 108, 114, 115prmreclem5 16251 . . . . . 6 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2)) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))))
117116ex 413 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) → (((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2)))))
118 eqid 2826 . . . . . . . . 9 (ℤ‘(𝑘 + 1)) = (ℤ‘(𝑘 + 1))
11994nnzd 12080 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℤ)
120 eluznn 12312 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
12194, 120sylan 580 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → 𝑗 ∈ ℕ)
122121, 41syl 17 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12339a1i 11 . . . . . . . . 9 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘(𝑘 + 1))) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
124 simpl 483 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ∈ dom ⇝ )
12541adantl 482 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
12639recni 10649 . . . . . . . . . . . . 13 if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ
127126a1i 11 . . . . . . . . . . . 12 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
128125, 127eqeltrd 2918 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
1291, 94, 128iserex 15008 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ ))
130124, 129mpbid 233 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → seq(𝑘 + 1)( + , 𝐹) ∈ dom ⇝ )
131118, 119, 122, 123, 130isumrecl 15115 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
13273a1i 11 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1 / 2) ∈ ℝ)
133 elfznn 12931 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
134133adantl 482 . . . . . . . . . . 11 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
135134, 41syl 17 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹𝑗) = if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
13629, 1syl6eleq 2928 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
137126a1i 11 . . . . . . . . . 10 (((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℂ)
138135, 136, 137fsumser 15082 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (seq1( + , 𝐹)‘𝑘))
139138, 27eqeltrd 2918 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
140131, 132, 139ltadd2d 10790 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
1411, 118, 94, 125, 127, 124isumsplit 15190 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
142 nncn 11640 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
143142adantl 482 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
144 ax-1cn 10589 . . . . . . . . . . . . 13 1 ∈ ℂ
145 pncan 10886 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
146143, 144, 145sylancl 586 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) − 1) = 𝑘)
147146oveq2d 7166 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (1...((𝑘 + 1) − 1)) = (1...𝑘))
148147sumeq1d 15053 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0))
149148oveq1d 7165 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (1...((𝑘 + 1) − 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
150141, 149eqtrd 2861 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)))
151150breq1d 5073 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2)) ↔ (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0)) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
152140, 151bitr4d 283 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
153 eqid 2826 . . . . . . . . . 10 seq1( + , 𝐹) = seq1( + , 𝐹)
1541, 153, 23, 42, 43, 54, 60isumsup 15197 . . . . . . . . 9 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
155154, 67eqeltrd 2918 . . . . . . . 8 (seq1( + , 𝐹) ∈ dom ⇝ → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
156155adantr 481 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ∈ ℝ)
157156, 132, 139ltsubaddd 11230 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) + (1 / 2))))
158154adantr 481 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) = sup(ran seq1( + , 𝐹), ℝ, < ))
159158oveq1d 7165 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) = (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)))
160159, 138breq12d 5076 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((Σ𝑗 ∈ ℕ if(𝑗 ∈ ℙ, (1 / 𝑗), 0) − (1 / 2)) < Σ𝑗 ∈ (1...𝑘)if(𝑗 ∈ ℙ, (1 / 𝑗), 0) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
161152, 157, 1603bitr2d 308 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ (ℤ‘(𝑘 + 1))if(𝑗 ∈ ℙ, (1 / 𝑗), 0) < (1 / 2) ↔ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘)))
162 2cn 11706 . . . . . . . . . . . . 13 2 ∈ ℂ
163162a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
164144a1i 11 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
165163, 143, 164adddid 10659 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · (𝑘 + 1)) = ((2 · 𝑘) + (2 · 1)))
16694nncnd 11648 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
167 mulcom 10617 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
168166, 162, 167sylancl 586 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (2 · (𝑘 + 1)))
16986nncnd 11648 . . . . . . . . . . . . 13 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
170169, 164, 164addassd 10657 . . . . . . . . . . . 12 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (1 + 1)))
1711442timesi 11769 . . . . . . . . . . . . 13 (2 · 1) = (1 + 1)
172171oveq2i 7161 . . . . . . . . . . . 12 ((2 · 𝑘) + (2 · 1)) = ((2 · 𝑘) + (1 + 1))
173170, 172syl6eqr 2879 . . . . . . . . . . 11 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) + 1) + 1) = ((2 · 𝑘) + (2 · 1)))
174165, 168, 1733eqtr4d 2871 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 1) · 2) = (((2 · 𝑘) + 1) + 1))
175174oveq2d 7166 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = (2↑(((2 · 𝑘) + 1) + 1)))
176 2nn0 11908 . . . . . . . . . . 11 2 ∈ ℕ0
177176a1i 11 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℕ0)
178163, 177, 95expmuld 13508 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((𝑘 + 1) · 2)) = ((2↑(𝑘 + 1))↑2))
179 expp1 13431 . . . . . . . . . 10 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
180162, 88, 179sylancr 587 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(((2 · 𝑘) + 1) + 1)) = ((2↑((2 · 𝑘) + 1)) · 2))
181175, 178, 1803eqtr3d 2869 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1))↑2) = ((2↑((2 · 𝑘) + 1)) · 2))
182181oveq1d 7165 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (((2↑((2 · 𝑘) + 1)) · 2) / 2))
183 expcl 13442 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((2 · 𝑘) + 1) ∈ ℕ0) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
184162, 88, 183sylancr 587 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) ∈ ℂ)
185 2ne0 11735 . . . . . . . . 9 2 ≠ 0
186 divcan4 11319 . . . . . . . . 9 (((2↑((2 · 𝑘) + 1)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
187162, 185, 186mp3an23 1446 . . . . . . . 8 ((2↑((2 · 𝑘) + 1)) ∈ ℂ → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
188184, 187syl 17 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑((2 · 𝑘) + 1)) · 2) / 2) = (2↑((2 · 𝑘) + 1)))
189182, 188eqtrd 2861 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (((2↑(𝑘 + 1))↑2) / 2) = (2↑((2 · 𝑘) + 1)))
190 nnnn0 11898 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
191190adantl 482 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
192163, 95, 191expaddd 13507 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + (𝑘 + 1))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
1931432timesd 11874 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
194193oveq1d 7165 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = ((𝑘 + 𝑘) + 1))
195143, 143, 164addassd 10657 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((𝑘 + 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
196194, 195eqtrd 2861 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) = (𝑘 + (𝑘 + 1)))
197196oveq2d 7166 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑((2 · 𝑘) + 1)) = (2↑(𝑘 + (𝑘 + 1))))
19897nnrpd 12424 . . . . . . . . . 10 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (2↑(𝑘 + 1)) ∈ ℝ+)
199198rprege0d 12433 . . . . . . . . 9 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))))
200 sqrtsq 14624 . . . . . . . . 9 (((2↑(𝑘 + 1)) ∈ ℝ ∧ 0 ≤ (2↑(𝑘 + 1))) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
201199, 200syl 17 . . . . . . . 8 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (√‘((2↑(𝑘 + 1))↑2)) = (2↑(𝑘 + 1)))
202201oveq2d 7166 . . . . . . 7 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = ((2↑𝑘) · (2↑(𝑘 + 1))))
203192, 197, 2023eqtr4rd 2872 . . . . . 6 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) = (2↑((2 · 𝑘) + 1)))
204189, 203breq12d 5076 . . . . 5 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((((2↑(𝑘 + 1))↑2) / 2) < ((2↑𝑘) · (√‘((2↑(𝑘 + 1))↑2))) ↔ (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
205117, 161, 2043imtr3d 294 . . . 4 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ((sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘) → (2↑((2 · 𝑘) + 1)) < (2↑((2 · 𝑘) + 1))))
20691, 205mtod 199 . . 3 ((seq1( + , 𝐹) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → ¬ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
207206nrexdv 3275 . 2 (seq1( + , 𝐹) ∈ dom ⇝ → ¬ ∃𝑘 ∈ ℕ (sup(ran seq1( + , 𝐹), ℝ, < ) − (1 / 2)) < (seq1( + , 𝐹)‘𝑘))
20882, 207pm2.65i 195 1 ¬ seq1( + , 𝐹) ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396   = wceq 1530  wtru 1531  wcel 2107  wne 3021  wral 3143  wrex 3144  {crab 3147  cdif 3937  wss 3940  c0 4295  ifcif 4470   class class class wbr 5063  cmpt 5143  dom cdm 5554  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7150  supcsup 8898  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cuz 12237  +crp 12384  ...cfz 12887  seqcseq 13364  cexp 13424  csqrt 14587  cli 14836  Σcsu 15037  cdvds 15602  cprime 16010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-dvds 15603  df-gcd 15839  df-prm 16011  df-pc 16169
This theorem is referenced by:  prmrec  16253
  Copyright terms: Public domain W3C validator