MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Structured version   Visualization version   GIF version

Theorem dvferm1lem 25888
Description: Lemma for dvferm 25892. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm1.z (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈))
dvferm1.t (𝜑𝑇 ∈ ℝ+)
dvferm1.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
dvferm1.x 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
Assertion
Ref Expression
dvferm1lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . . . . . . . 9 (𝜑𝑋 ⊆ ℝ)
3 dvfre 25855 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
41, 2, 3syl2anc 584 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
5 dvferm.d . . . . . . . 8 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
64, 5ffvelcdmd 7057 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
76recnd 11202 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
87subidd 11521 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0)
9 ioossre 13368 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
10 dvferm.u . . . . . . . . . 10 (𝜑𝑈 ∈ (𝐴(,)𝐵))
119, 10sselid 3944 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
12 eliooord 13366 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
1310, 12syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1413simprd 495 . . . . . . . . . . . 12 (𝜑𝑈 < 𝐵)
15 dvferm1.t . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ+)
1611, 15ltaddrpd 13028 . . . . . . . . . . . 12 (𝜑𝑈 < (𝑈 + 𝑇))
17 breq2 5111 . . . . . . . . . . . . 13 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
18 breq2 5111 . . . . . . . . . . . . 13 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
1917, 18ifboth 4528 . . . . . . . . . . . 12 ((𝑈 < 𝐵𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
2014, 16, 19syl2anc 584 . . . . . . . . . . 11 (𝜑𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
21 ne0i 4304 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
22 ndmioo 13333 . . . . . . . . . . . . . . . . 17 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
2322necon1ai 2952 . . . . . . . . . . . . . . . 16 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2410, 21, 233syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2524simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
2615rpred 12995 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℝ)
2711, 26readdcld 11203 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 + 𝑇) ∈ ℝ)
2827rexrd 11224 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 + 𝑇) ∈ ℝ*)
2925, 28ifcld 4535 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ*)
30 mnfxr 11231 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
3211rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
3311mnfltd 13084 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < 𝑈)
3431, 32, 25, 33, 14xrlttrd 13119 . . . . . . . . . . . . . 14 (𝜑 → -∞ < 𝐵)
3527mnfltd 13084 . . . . . . . . . . . . . 14 (𝜑 → -∞ < (𝑈 + 𝑇))
36 breq2 5111 . . . . . . . . . . . . . . 15 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
37 breq2 5111 . . . . . . . . . . . . . . 15 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
3836, 37ifboth 4528 . . . . . . . . . . . . . 14 ((-∞ < 𝐵 ∧ -∞ < (𝑈 + 𝑇)) → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
3934, 35, 38syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
40 xrmin2 13138 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
4125, 28, 40syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
42 xrre 13129 . . . . . . . . . . . . 13 (((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
4329, 27, 39, 41, 42syl22anc 838 . . . . . . . . . . . 12 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
44 avglt1 12420 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4511, 43, 44syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4620, 45mpbid 232 . . . . . . . . . 10 (𝜑𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))
47 dvferm1.x . . . . . . . . . 10 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
4846, 47breqtrrdi 5149 . . . . . . . . 9 (𝜑𝑈 < 𝑆)
4911, 48gtned 11309 . . . . . . . 8 (𝜑𝑆𝑈)
5011, 43readdcld 11203 . . . . . . . . . . . 12 (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ)
5150rehalfcld 12429 . . . . . . . . . . 11 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ)
5247, 51eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
5311, 52, 48ltled 11322 . . . . . . . . . 10 (𝜑𝑈𝑆)
5411, 52, 53abssubge0d 15400 . . . . . . . . 9 (𝜑 → (abs‘(𝑆𝑈)) = (𝑆𝑈))
55 avglt2 12421 . . . . . . . . . . . . . 14 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5611, 43, 55syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5720, 56mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5847, 57eqbrtrid 5142 . . . . . . . . . . 11 (𝜑𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5952, 43, 27, 58, 41ltletrd 11334 . . . . . . . . . 10 (𝜑𝑆 < (𝑈 + 𝑇))
6052, 11, 26ltsubadd2d 11776 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈) < 𝑇𝑆 < (𝑈 + 𝑇)))
6159, 60mpbird 257 . . . . . . . . 9 (𝜑 → (𝑆𝑈) < 𝑇)
6254, 61eqbrtrd 5129 . . . . . . . 8 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
63 neeq1 2987 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
64 fvoveq1 7410 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
6564breq1d 5117 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
6663, 65anbi12d 632 . . . . . . . . . 10 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
67 fveq2 6858 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
6867oveq1d 7402 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
69 oveq1 7394 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
7068, 69oveq12d 7405 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
7170fvoveq1d 7409 . . . . . . . . . . 11 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
7271breq1d 5117 . . . . . . . . . 10 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7366, 72imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
74 dvferm1.l . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7524simpld 494 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
7613simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑈)
7775, 32, 76xrltled 13110 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
78 iooss1 13341 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
7975, 77, 78syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
80 dvferm.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
8179, 80sstrd 3957 . . . . . . . . . . 11 (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋)
8252rexrd 11224 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ*)
83 xrmin1 13137 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8425, 28, 83syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8582, 29, 25, 58, 84xrltletrd 13121 . . . . . . . . . . . 12 (𝜑𝑆 < 𝐵)
86 elioo2 13347 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8732, 25, 86syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8852, 48, 85, 87mpbir3and 1343 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑈(,)𝐵))
8981, 88sseldd 3947 . . . . . . . . . 10 (𝜑𝑆𝑋)
90 eldifsn 4750 . . . . . . . . . 10 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
9189, 49, 90sylanbrc 583 . . . . . . . . 9 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
9273, 74, 91rspcdva 3589 . . . . . . . 8 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
9349, 62, 92mp2and 699 . . . . . . 7 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))
941, 89ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐹𝑆) ∈ ℝ)
9580, 10sseldd 3947 . . . . . . . . . . 11 (𝜑𝑈𝑋)
961, 95ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
9794, 96resubcld 11606 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
9852, 11resubcld 11606 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) ∈ ℝ)
9911, 52posdifd 11765 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆𝑈)))
10048, 99mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (𝑆𝑈))
10198, 100elrpd 12992 . . . . . . . . 9 (𝜑 → (𝑆𝑈) ∈ ℝ+)
10297, 101rerpdivcld 13026 . . . . . . . 8 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
103102, 6, 6absdifltd 15402 . . . . . . 7 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))))
10493, 103mpbid 232 . . . . . 6 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))
105104simpld 494 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
1068, 105eqbrtrrd 5131 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
107 gt0div 12049 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ (𝑆𝑈) ∈ ℝ ∧ 0 < (𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
10897, 98, 100, 107syl3anc 1373 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
109106, 108mpbird 257 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11096, 94posdifd 11765 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
111109, 110mpbird 257 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
112 fveq2 6858 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
113112breq1d 5117 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
114 dvferm1.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
115113, 114, 88rspcdva 3589 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
11694, 96, 115lensymd 11325 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
117111, 116pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  c0 4296  ifcif 4488  {csn 4589   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  abscabs 15200   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-rest 17385  df-topn 17386  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvferm1  25889
  Copyright terms: Public domain W3C validator