Proof of Theorem dvferm1lem
Step | Hyp | Ref
| Expression |
1 | | dvferm.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
2 | | dvferm.b |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℝ) |
3 | | dvfre 25113 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
4 | 1, 2, 3 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
5 | | dvferm.d |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ dom (ℝ D 𝐹)) |
6 | 4, 5 | ffvelrnd 6959 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ) |
7 | 6 | recnd 11004 |
. . . . . 6
⊢ (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ) |
8 | 7 | subidd 11320 |
. . . . 5
⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0) |
9 | | ioossre 13139 |
. . . . . . . . . 10
⊢ (𝐴(,)𝐵) ⊆ ℝ |
10 | | dvferm.u |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ (𝐴(,)𝐵)) |
11 | 9, 10 | sselid 3924 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ ℝ) |
12 | | eliooord 13137 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
13 | 10, 12 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 < 𝑈 ∧ 𝑈 < 𝐵)) |
14 | 13 | simprd 496 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 < 𝐵) |
15 | | dvferm1.t |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
16 | 11, 15 | ltaddrpd 12804 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 < (𝑈 + 𝑇)) |
17 | | breq2 5083 |
. . . . . . . . . . . . 13
⊢ (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵 ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
18 | | breq2 5083 |
. . . . . . . . . . . . 13
⊢ ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
19 | 17, 18 | ifboth 4504 |
. . . . . . . . . . . 12
⊢ ((𝑈 < 𝐵 ∧ 𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
20 | 14, 16, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
21 | | ne0i 4274 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) |
22 | | ndmioo 13105 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐴 ∈
ℝ* ∧ 𝐵
∈ ℝ*) → (𝐴(,)𝐵) = ∅) |
23 | 22 | necon1ai 2973 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
24 | 10, 21, 23 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
25 | 24 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
26 | 15 | rpred 12771 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑇 ∈ ℝ) |
27 | 11, 26 | readdcld 11005 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 + 𝑇) ∈ ℝ) |
28 | 27 | rexrd 11026 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 + 𝑇) ∈
ℝ*) |
29 | 25, 28 | ifcld 4511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈
ℝ*) |
30 | | mnfxr 11033 |
. . . . . . . . . . . . . . . 16
⊢ -∞
∈ ℝ* |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -∞ ∈
ℝ*) |
32 | 11 | rexrd 11026 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ∈
ℝ*) |
33 | 11 | mnfltd 12859 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -∞ < 𝑈) |
34 | 31, 32, 25, 33, 14 | xrlttrd 12892 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -∞ < 𝐵) |
35 | 27 | mnfltd 12859 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -∞ < (𝑈 + 𝑇)) |
36 | | breq2 5083 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
37 | | breq2 5083 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
38 | 36, 37 | ifboth 4504 |
. . . . . . . . . . . . . 14
⊢
((-∞ < 𝐵
∧ -∞ < (𝑈 +
𝑇)) → -∞ <
if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
39 | 34, 35, 38 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
40 | | xrmin2 12911 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ*
∧ (𝑈 + 𝑇) ∈ ℝ*)
→ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇)) |
41 | 25, 28, 40 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇)) |
42 | | xrre 12902 |
. . . . . . . . . . . . 13
⊢
(((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ <
if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) |
43 | 29, 27, 39, 41, 42 | syl22anc 836 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) |
44 | | avglt1 12211 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))) |
45 | 11, 43, 44 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))) |
46 | 20, 45 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)) |
47 | | dvferm1.x |
. . . . . . . . . 10
⊢ 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) |
48 | 46, 47 | breqtrrdi 5121 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 < 𝑆) |
49 | 11, 48 | gtned 11110 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ≠ 𝑈) |
50 | 11, 43 | readdcld 11005 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ) |
51 | 50 | rehalfcld 12220 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ) |
52 | 47, 51 | eqeltrid 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ ℝ) |
53 | 11, 52, 48 | ltled 11123 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ≤ 𝑆) |
54 | 11, 52, 53 | abssubge0d 15141 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘(𝑆 − 𝑈)) = (𝑆 − 𝑈)) |
55 | | avglt2 12212 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
56 | 11, 43, 55 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))) |
57 | 20, 56 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
58 | 47, 57 | eqbrtrid 5114 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) |
59 | 52, 43, 27, 58, 41 | ltletrd 11135 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 < (𝑈 + 𝑇)) |
60 | 52, 11, 26 | ltsubadd2d 11573 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆 − 𝑈) < 𝑇 ↔ 𝑆 < (𝑈 + 𝑇))) |
61 | 59, 60 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 − 𝑈) < 𝑇) |
62 | 54, 61 | eqbrtrd 5101 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝑆 − 𝑈)) < 𝑇) |
63 | | neeq1 3008 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → (𝑧 ≠ 𝑈 ↔ 𝑆 ≠ 𝑈)) |
64 | | fvoveq1 7294 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 → (abs‘(𝑧 − 𝑈)) = (abs‘(𝑆 − 𝑈))) |
65 | 64 | breq1d 5089 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → ((abs‘(𝑧 − 𝑈)) < 𝑇 ↔ (abs‘(𝑆 − 𝑈)) < 𝑇)) |
66 | 63, 65 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → ((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) ↔ (𝑆 ≠ 𝑈 ∧ (abs‘(𝑆 − 𝑈)) < 𝑇))) |
67 | | fveq2 6771 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑆 → (𝐹‘𝑧) = (𝐹‘𝑆)) |
68 | 67 | oveq1d 7286 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑆 → ((𝐹‘𝑧) − (𝐹‘𝑈)) = ((𝐹‘𝑆) − (𝐹‘𝑈))) |
69 | | oveq1 7278 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑆 → (𝑧 − 𝑈) = (𝑆 − 𝑈)) |
70 | 68, 69 | oveq12d 7289 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 → (((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) = (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈))) |
71 | 70 | fvoveq1d 7293 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈)))) |
72 | 71 | breq1d 5089 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑆 → ((abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) |
73 | 66, 72 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑧 = 𝑆 → (((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆 ≠ 𝑈 ∧ (abs‘(𝑆 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))) |
74 | | dvferm1.l |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧 ≠ 𝑈 ∧ (abs‘(𝑧 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑧) − (𝐹‘𝑈)) / (𝑧 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) |
75 | 24 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
76 | 13 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 < 𝑈) |
77 | 75, 32, 76 | xrltled 12883 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤ 𝑈) |
78 | | iooss1 13113 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≤ 𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
79 | 75, 77, 78 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵)) |
80 | | dvferm.s |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋) |
81 | 79, 80 | sstrd 3936 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋) |
82 | 52 | rexrd 11026 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
83 | | xrmin1 12910 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ*
∧ (𝑈 + 𝑇) ∈ ℝ*)
→ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵) |
84 | 25, 28, 83 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵) |
85 | 82, 29, 25, 58, 84 | xrltletrd 12894 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 < 𝐵) |
86 | | elioo2 13119 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆 ∧ 𝑆 < 𝐵))) |
87 | 32, 25, 86 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆 ∧ 𝑆 < 𝐵))) |
88 | 52, 48, 85, 87 | mpbir3and 1341 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ (𝑈(,)𝐵)) |
89 | 81, 88 | sseldd 3927 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ 𝑋) |
90 | | eldifsn 4726 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆 ∈ 𝑋 ∧ 𝑆 ≠ 𝑈)) |
91 | 89, 49, 90 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ (𝑋 ∖ {𝑈})) |
92 | 73, 74, 91 | rspcdva 3563 |
. . . . . . . 8
⊢ (𝜑 → ((𝑆 ≠ 𝑈 ∧ (abs‘(𝑆 − 𝑈)) < 𝑇) → (abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))) |
93 | 49, 62, 92 | mp2and 696 |
. . . . . . 7
⊢ (𝜑 → (abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) |
94 | 1, 89 | ffvelrnd 6959 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑆) ∈ ℝ) |
95 | 80, 10 | sseldd 3927 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ 𝑋) |
96 | 1, 95 | ffvelrnd 6959 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑈) ∈ ℝ) |
97 | 94, 96 | resubcld 11403 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑆) − (𝐹‘𝑈)) ∈ ℝ) |
98 | 52, 11 | resubcld 11403 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 − 𝑈) ∈ ℝ) |
99 | 11, 52 | posdifd 11562 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆 − 𝑈))) |
100 | 48, 99 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < (𝑆 − 𝑈)) |
101 | 98, 100 | elrpd 12768 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 − 𝑈) ∈
ℝ+) |
102 | 97, 101 | rerpdivcld 12802 |
. . . . . . . 8
⊢ (𝜑 → (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) ∈ ℝ) |
103 | 102, 6, 6 | absdifltd 15143 |
. . . . . . 7
⊢ (𝜑 → ((abs‘((((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) ∧ (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))) |
104 | 93, 103 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) ∧ (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))) |
105 | 104 | simpld 495 |
. . . . 5
⊢ (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈))) |
106 | 8, 105 | eqbrtrrd 5103 |
. . . 4
⊢ (𝜑 → 0 < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈))) |
107 | | gt0div 11841 |
. . . . 5
⊢ ((((𝐹‘𝑆) − (𝐹‘𝑈)) ∈ ℝ ∧ (𝑆 − 𝑈) ∈ ℝ ∧ 0 < (𝑆 − 𝑈)) → (0 < ((𝐹‘𝑆) − (𝐹‘𝑈)) ↔ 0 < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)))) |
108 | 97, 98, 100, 107 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (0 < ((𝐹‘𝑆) − (𝐹‘𝑈)) ↔ 0 < (((𝐹‘𝑆) − (𝐹‘𝑈)) / (𝑆 − 𝑈)))) |
109 | 106, 108 | mpbird 256 |
. . 3
⊢ (𝜑 → 0 < ((𝐹‘𝑆) − (𝐹‘𝑈))) |
110 | 96, 94 | posdifd 11562 |
. . 3
⊢ (𝜑 → ((𝐹‘𝑈) < (𝐹‘𝑆) ↔ 0 < ((𝐹‘𝑆) − (𝐹‘𝑈)))) |
111 | 109, 110 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑆)) |
112 | | fveq2 6771 |
. . . . 5
⊢ (𝑦 = 𝑆 → (𝐹‘𝑦) = (𝐹‘𝑆)) |
113 | 112 | breq1d 5089 |
. . . 4
⊢ (𝑦 = 𝑆 → ((𝐹‘𝑦) ≤ (𝐹‘𝑈) ↔ (𝐹‘𝑆) ≤ (𝐹‘𝑈))) |
114 | | dvferm1.r |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹‘𝑦) ≤ (𝐹‘𝑈)) |
115 | 113, 114,
88 | rspcdva 3563 |
. . 3
⊢ (𝜑 → (𝐹‘𝑆) ≤ (𝐹‘𝑈)) |
116 | 94, 96, 115 | lensymd 11126 |
. 2
⊢ (𝜑 → ¬ (𝐹‘𝑈) < (𝐹‘𝑆)) |
117 | 111, 116 | pm2.65i 193 |
1
⊢ ¬
𝜑 |