MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Structured version   Visualization version   GIF version

Theorem dvferm1lem 25936
Description: Lemma for dvferm 25940. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm1.z (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈))
dvferm1.t (𝜑𝑇 ∈ ℝ+)
dvferm1.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
dvferm1.x 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
Assertion
Ref Expression
dvferm1lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . . . . . . . 9 (𝜑𝑋 ⊆ ℝ)
3 dvfre 25903 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
41, 2, 3syl2anc 582 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
5 dvferm.d . . . . . . . 8 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
64, 5ffvelcdmd 7100 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
76recnd 11280 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
87subidd 11597 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0)
9 ioossre 13425 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
10 dvferm.u . . . . . . . . . 10 (𝜑𝑈 ∈ (𝐴(,)𝐵))
119, 10sselid 3980 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
12 eliooord 13423 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
1310, 12syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1413simprd 494 . . . . . . . . . . . 12 (𝜑𝑈 < 𝐵)
15 dvferm1.t . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ+)
1611, 15ltaddrpd 13089 . . . . . . . . . . . 12 (𝜑𝑈 < (𝑈 + 𝑇))
17 breq2 5156 . . . . . . . . . . . . 13 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
18 breq2 5156 . . . . . . . . . . . . 13 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
1917, 18ifboth 4571 . . . . . . . . . . . 12 ((𝑈 < 𝐵𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
2014, 16, 19syl2anc 582 . . . . . . . . . . 11 (𝜑𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
21 ne0i 4338 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
22 ndmioo 13391 . . . . . . . . . . . . . . . . 17 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
2322necon1ai 2965 . . . . . . . . . . . . . . . 16 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2410, 21, 233syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2524simprd 494 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
2615rpred 13056 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℝ)
2711, 26readdcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 + 𝑇) ∈ ℝ)
2827rexrd 11302 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 + 𝑇) ∈ ℝ*)
2925, 28ifcld 4578 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ*)
30 mnfxr 11309 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
3211rexrd 11302 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
3311mnfltd 13144 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < 𝑈)
3431, 32, 25, 33, 14xrlttrd 13178 . . . . . . . . . . . . . 14 (𝜑 → -∞ < 𝐵)
3527mnfltd 13144 . . . . . . . . . . . . . 14 (𝜑 → -∞ < (𝑈 + 𝑇))
36 breq2 5156 . . . . . . . . . . . . . . 15 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
37 breq2 5156 . . . . . . . . . . . . . . 15 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
3836, 37ifboth 4571 . . . . . . . . . . . . . 14 ((-∞ < 𝐵 ∧ -∞ < (𝑈 + 𝑇)) → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
3934, 35, 38syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
40 xrmin2 13197 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
4125, 28, 40syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
42 xrre 13188 . . . . . . . . . . . . 13 (((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
4329, 27, 39, 41, 42syl22anc 837 . . . . . . . . . . . 12 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
44 avglt1 12488 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4511, 43, 44syl2anc 582 . . . . . . . . . . 11 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4620, 45mpbid 231 . . . . . . . . . 10 (𝜑𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))
47 dvferm1.x . . . . . . . . . 10 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
4846, 47breqtrrdi 5194 . . . . . . . . 9 (𝜑𝑈 < 𝑆)
4911, 48gtned 11387 . . . . . . . 8 (𝜑𝑆𝑈)
5011, 43readdcld 11281 . . . . . . . . . . . 12 (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ)
5150rehalfcld 12497 . . . . . . . . . . 11 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ)
5247, 51eqeltrid 2833 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
5311, 52, 48ltled 11400 . . . . . . . . . 10 (𝜑𝑈𝑆)
5411, 52, 53abssubge0d 15418 . . . . . . . . 9 (𝜑 → (abs‘(𝑆𝑈)) = (𝑆𝑈))
55 avglt2 12489 . . . . . . . . . . . . . 14 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5611, 43, 55syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5720, 56mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5847, 57eqbrtrid 5187 . . . . . . . . . . 11 (𝜑𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5952, 43, 27, 58, 41ltletrd 11412 . . . . . . . . . 10 (𝜑𝑆 < (𝑈 + 𝑇))
6052, 11, 26ltsubadd2d 11850 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈) < 𝑇𝑆 < (𝑈 + 𝑇)))
6159, 60mpbird 256 . . . . . . . . 9 (𝜑 → (𝑆𝑈) < 𝑇)
6254, 61eqbrtrd 5174 . . . . . . . 8 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
63 neeq1 3000 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
64 fvoveq1 7449 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
6564breq1d 5162 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
6663, 65anbi12d 630 . . . . . . . . . 10 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
67 fveq2 6902 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
6867oveq1d 7441 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
69 oveq1 7433 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
7068, 69oveq12d 7444 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
7170fvoveq1d 7448 . . . . . . . . . . 11 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
7271breq1d 5162 . . . . . . . . . 10 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7366, 72imbi12d 343 . . . . . . . . 9 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
74 dvferm1.l . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7524simpld 493 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
7613simpld 493 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑈)
7775, 32, 76xrltled 13169 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
78 iooss1 13399 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
7975, 77, 78syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
80 dvferm.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
8179, 80sstrd 3992 . . . . . . . . . . 11 (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋)
8252rexrd 11302 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ*)
83 xrmin1 13196 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8425, 28, 83syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8582, 29, 25, 58, 84xrltletrd 13180 . . . . . . . . . . . 12 (𝜑𝑆 < 𝐵)
86 elioo2 13405 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8732, 25, 86syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8852, 48, 85, 87mpbir3and 1339 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑈(,)𝐵))
8981, 88sseldd 3983 . . . . . . . . . 10 (𝜑𝑆𝑋)
90 eldifsn 4795 . . . . . . . . . 10 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
9189, 49, 90sylanbrc 581 . . . . . . . . 9 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
9273, 74, 91rspcdva 3612 . . . . . . . 8 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
9349, 62, 92mp2and 697 . . . . . . 7 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))
941, 89ffvelcdmd 7100 . . . . . . . . . 10 (𝜑 → (𝐹𝑆) ∈ ℝ)
9580, 10sseldd 3983 . . . . . . . . . . 11 (𝜑𝑈𝑋)
961, 95ffvelcdmd 7100 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
9794, 96resubcld 11680 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
9852, 11resubcld 11680 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) ∈ ℝ)
9911, 52posdifd 11839 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆𝑈)))
10048, 99mpbid 231 . . . . . . . . . 10 (𝜑 → 0 < (𝑆𝑈))
10198, 100elrpd 13053 . . . . . . . . 9 (𝜑 → (𝑆𝑈) ∈ ℝ+)
10297, 101rerpdivcld 13087 . . . . . . . 8 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
103102, 6, 6absdifltd 15420 . . . . . . 7 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))))
10493, 103mpbid 231 . . . . . 6 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))
105104simpld 493 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
1068, 105eqbrtrrd 5176 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
107 gt0div 12118 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ (𝑆𝑈) ∈ ℝ ∧ 0 < (𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
10897, 98, 100, 107syl3anc 1368 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
109106, 108mpbird 256 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11096, 94posdifd 11839 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
111109, 110mpbird 256 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
112 fveq2 6902 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
113112breq1d 5162 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
114 dvferm1.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
115113, 114, 88rspcdva 3612 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
11694, 96, 115lensymd 11403 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
117111, 116pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  cdif 3946  wss 3949  c0 4326  ifcif 4532  {csn 4632   class class class wbr 5152  dom cdm 5682  wf 6549  cfv 6553  (class class class)co 7426  cr 11145  0cc0 11146   + caddc 11149  -∞cmnf 11284  *cxr 11285   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  2c2 12305  +crp 13014  (,)cioo 13364  abscabs 15221   D cdv 25812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-icc 13371  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-rest 17411  df-topn 17412  df-topgen 17432  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-cncf 24818  df-limc 25815  df-dv 25816
This theorem is referenced by:  dvferm1  25937
  Copyright terms: Public domain W3C validator