MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Structured version   Visualization version   GIF version

Theorem dvferm1lem 26042
Description: Lemma for dvferm 26046. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm1.z (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈))
dvferm1.t (𝜑𝑇 ∈ ℝ+)
dvferm1.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
dvferm1.x 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
Assertion
Ref Expression
dvferm1lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . . . . . . . 9 (𝜑𝑋 ⊆ ℝ)
3 dvfre 26009 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
41, 2, 3syl2anc 583 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
5 dvferm.d . . . . . . . 8 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
64, 5ffvelcdmd 7119 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
76recnd 11318 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
87subidd 11635 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0)
9 ioossre 13468 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
10 dvferm.u . . . . . . . . . 10 (𝜑𝑈 ∈ (𝐴(,)𝐵))
119, 10sselid 4006 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
12 eliooord 13466 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
1310, 12syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1413simprd 495 . . . . . . . . . . . 12 (𝜑𝑈 < 𝐵)
15 dvferm1.t . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ+)
1611, 15ltaddrpd 13132 . . . . . . . . . . . 12 (𝜑𝑈 < (𝑈 + 𝑇))
17 breq2 5170 . . . . . . . . . . . . 13 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
18 breq2 5170 . . . . . . . . . . . . 13 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
1917, 18ifboth 4587 . . . . . . . . . . . 12 ((𝑈 < 𝐵𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
2014, 16, 19syl2anc 583 . . . . . . . . . . 11 (𝜑𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
21 ne0i 4364 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
22 ndmioo 13434 . . . . . . . . . . . . . . . . 17 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
2322necon1ai 2974 . . . . . . . . . . . . . . . 16 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2410, 21, 233syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2524simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
2615rpred 13099 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℝ)
2711, 26readdcld 11319 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 + 𝑇) ∈ ℝ)
2827rexrd 11340 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 + 𝑇) ∈ ℝ*)
2925, 28ifcld 4594 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ*)
30 mnfxr 11347 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
3211rexrd 11340 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
3311mnfltd 13187 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < 𝑈)
3431, 32, 25, 33, 14xrlttrd 13221 . . . . . . . . . . . . . 14 (𝜑 → -∞ < 𝐵)
3527mnfltd 13187 . . . . . . . . . . . . . 14 (𝜑 → -∞ < (𝑈 + 𝑇))
36 breq2 5170 . . . . . . . . . . . . . . 15 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
37 breq2 5170 . . . . . . . . . . . . . . 15 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
3836, 37ifboth 4587 . . . . . . . . . . . . . 14 ((-∞ < 𝐵 ∧ -∞ < (𝑈 + 𝑇)) → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
3934, 35, 38syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
40 xrmin2 13240 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
4125, 28, 40syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
42 xrre 13231 . . . . . . . . . . . . 13 (((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
4329, 27, 39, 41, 42syl22anc 838 . . . . . . . . . . . 12 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
44 avglt1 12531 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4511, 43, 44syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4620, 45mpbid 232 . . . . . . . . . 10 (𝜑𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))
47 dvferm1.x . . . . . . . . . 10 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
4846, 47breqtrrdi 5208 . . . . . . . . 9 (𝜑𝑈 < 𝑆)
4911, 48gtned 11425 . . . . . . . 8 (𝜑𝑆𝑈)
5011, 43readdcld 11319 . . . . . . . . . . . 12 (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ)
5150rehalfcld 12540 . . . . . . . . . . 11 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ)
5247, 51eqeltrid 2848 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
5311, 52, 48ltled 11438 . . . . . . . . . 10 (𝜑𝑈𝑆)
5411, 52, 53abssubge0d 15480 . . . . . . . . 9 (𝜑 → (abs‘(𝑆𝑈)) = (𝑆𝑈))
55 avglt2 12532 . . . . . . . . . . . . . 14 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5611, 43, 55syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5720, 56mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5847, 57eqbrtrid 5201 . . . . . . . . . . 11 (𝜑𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5952, 43, 27, 58, 41ltletrd 11450 . . . . . . . . . 10 (𝜑𝑆 < (𝑈 + 𝑇))
6052, 11, 26ltsubadd2d 11888 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈) < 𝑇𝑆 < (𝑈 + 𝑇)))
6159, 60mpbird 257 . . . . . . . . 9 (𝜑 → (𝑆𝑈) < 𝑇)
6254, 61eqbrtrd 5188 . . . . . . . 8 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
63 neeq1 3009 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
64 fvoveq1 7471 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
6564breq1d 5176 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
6663, 65anbi12d 631 . . . . . . . . . 10 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
67 fveq2 6920 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
6867oveq1d 7463 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
69 oveq1 7455 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
7068, 69oveq12d 7466 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
7170fvoveq1d 7470 . . . . . . . . . . 11 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
7271breq1d 5176 . . . . . . . . . 10 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7366, 72imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
74 dvferm1.l . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7524simpld 494 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
7613simpld 494 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑈)
7775, 32, 76xrltled 13212 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
78 iooss1 13442 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
7975, 77, 78syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
80 dvferm.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
8179, 80sstrd 4019 . . . . . . . . . . 11 (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋)
8252rexrd 11340 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ*)
83 xrmin1 13239 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8425, 28, 83syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8582, 29, 25, 58, 84xrltletrd 13223 . . . . . . . . . . . 12 (𝜑𝑆 < 𝐵)
86 elioo2 13448 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8732, 25, 86syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8852, 48, 85, 87mpbir3and 1342 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑈(,)𝐵))
8981, 88sseldd 4009 . . . . . . . . . 10 (𝜑𝑆𝑋)
90 eldifsn 4811 . . . . . . . . . 10 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
9189, 49, 90sylanbrc 582 . . . . . . . . 9 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
9273, 74, 91rspcdva 3636 . . . . . . . 8 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
9349, 62, 92mp2and 698 . . . . . . 7 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))
941, 89ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝐹𝑆) ∈ ℝ)
9580, 10sseldd 4009 . . . . . . . . . . 11 (𝜑𝑈𝑋)
961, 95ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
9794, 96resubcld 11718 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
9852, 11resubcld 11718 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) ∈ ℝ)
9911, 52posdifd 11877 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆𝑈)))
10048, 99mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (𝑆𝑈))
10198, 100elrpd 13096 . . . . . . . . 9 (𝜑 → (𝑆𝑈) ∈ ℝ+)
10297, 101rerpdivcld 13130 . . . . . . . 8 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
103102, 6, 6absdifltd 15482 . . . . . . 7 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))))
10493, 103mpbid 232 . . . . . 6 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))
105104simpld 494 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
1068, 105eqbrtrrd 5190 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
107 gt0div 12161 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ (𝑆𝑈) ∈ ℝ ∧ 0 < (𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
10897, 98, 100, 107syl3anc 1371 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
109106, 108mpbird 257 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11096, 94posdifd 11877 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
111109, 110mpbird 257 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
112 fveq2 6920 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
113112breq1d 5176 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
114 dvferm1.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
115113, 114, 88rspcdva 3636 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
11694, 96, 115lensymd 11441 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
117111, 116pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  +crp 13057  (,)cioo 13407  abscabs 15283   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvferm1  26043
  Copyright terms: Public domain W3C validator