MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Structured version   Visualization version   GIF version

Theorem dvferm1lem 24587
Description: Lemma for dvferm 24591. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm1.r (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm1.z (𝜑 → 0 < ((ℝ D 𝐹)‘𝑈))
dvferm1.t (𝜑𝑇 ∈ ℝ+)
dvferm1.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
dvferm1.x 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
Assertion
Ref Expression
dvferm1lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9 (𝜑𝐹:𝑋⟶ℝ)
2 dvferm.b . . . . . . . . 9 (𝜑𝑋 ⊆ ℝ)
3 dvfre 24554 . . . . . . . . 9 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
41, 2, 3syl2anc 587 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
5 dvferm.d . . . . . . . 8 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
64, 5ffvelrnd 6829 . . . . . . 7 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
76recnd 10658 . . . . . 6 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
87subidd 10974 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) = 0)
9 ioossre 12786 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
10 dvferm.u . . . . . . . . . 10 (𝜑𝑈 ∈ (𝐴(,)𝐵))
119, 10sseldi 3913 . . . . . . . . 9 (𝜑𝑈 ∈ ℝ)
12 eliooord 12784 . . . . . . . . . . . . . 14 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
1310, 12syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
1413simprd 499 . . . . . . . . . . . 12 (𝜑𝑈 < 𝐵)
15 dvferm1.t . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ+)
1611, 15ltaddrpd 12452 . . . . . . . . . . . 12 (𝜑𝑈 < (𝑈 + 𝑇))
17 breq2 5034 . . . . . . . . . . . . 13 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < 𝐵𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
18 breq2 5034 . . . . . . . . . . . . 13 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (𝑈 < (𝑈 + 𝑇) ↔ 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
1917, 18ifboth 4463 . . . . . . . . . . . 12 ((𝑈 < 𝐵𝑈 < (𝑈 + 𝑇)) → 𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
2014, 16, 19syl2anc 587 . . . . . . . . . . 11 (𝜑𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
21 ne0i 4250 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
22 ndmioo 12753 . . . . . . . . . . . . . . . . 17 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
2322necon1ai 3014 . . . . . . . . . . . . . . . 16 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2410, 21, 233syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2524simprd 499 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ*)
2615rpred 12419 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℝ)
2711, 26readdcld 10659 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 + 𝑇) ∈ ℝ)
2827rexrd 10680 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 + 𝑇) ∈ ℝ*)
2925, 28ifcld 4470 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ*)
30 mnfxr 10687 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3130a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
3211rexrd 10680 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
3311mnfltd 12507 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < 𝑈)
3431, 32, 25, 33, 14xrlttrd 12540 . . . . . . . . . . . . . 14 (𝜑 → -∞ < 𝐵)
3527mnfltd 12507 . . . . . . . . . . . . . 14 (𝜑 → -∞ < (𝑈 + 𝑇))
36 breq2 5034 . . . . . . . . . . . . . . 15 (𝐵 = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < 𝐵 ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
37 breq2 5034 . . . . . . . . . . . . . . 15 ((𝑈 + 𝑇) = if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) → (-∞ < (𝑈 + 𝑇) ↔ -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
3836, 37ifboth 4463 . . . . . . . . . . . . . 14 ((-∞ < 𝐵 ∧ -∞ < (𝑈 + 𝑇)) → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
3934, 35, 38syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → -∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
40 xrmin2 12559 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
4125, 28, 40syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))
42 xrre 12550 . . . . . . . . . . . . 13 (((if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ) ∧ (-∞ < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ (𝑈 + 𝑇))) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
4329, 27, 39, 41, 42syl22anc 837 . . . . . . . . . . . 12 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ)
44 avglt1 11863 . . . . . . . . . . . 12 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4511, 43, 44syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ 𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)))
4620, 45mpbid 235 . . . . . . . . . 10 (𝜑𝑈 < ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2))
47 dvferm1.x . . . . . . . . . 10 𝑆 = ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2)
4846, 47breqtrrdi 5072 . . . . . . . . 9 (𝜑𝑈 < 𝑆)
4911, 48gtned 10764 . . . . . . . 8 (𝜑𝑆𝑈)
5011, 43readdcld 10659 . . . . . . . . . . . 12 (𝜑 → (𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) ∈ ℝ)
5150rehalfcld 11872 . . . . . . . . . . 11 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) ∈ ℝ)
5247, 51eqeltrid 2894 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
5311, 52, 48ltled 10777 . . . . . . . . . 10 (𝜑𝑈𝑆)
5411, 52, 53abssubge0d 14783 . . . . . . . . 9 (𝜑 → (abs‘(𝑆𝑈)) = (𝑆𝑈))
55 avglt2 11864 . . . . . . . . . . . . . 14 ((𝑈 ∈ ℝ ∧ if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ∈ ℝ) → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5611, 43, 55syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ↔ ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))))
5720, 56mpbid 235 . . . . . . . . . . . 12 (𝜑 → ((𝑈 + if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇))) / 2) < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5847, 57eqbrtrid 5065 . . . . . . . . . . 11 (𝜑𝑆 < if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)))
5952, 43, 27, 58, 41ltletrd 10789 . . . . . . . . . 10 (𝜑𝑆 < (𝑈 + 𝑇))
6052, 11, 26ltsubadd2d 11227 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈) < 𝑇𝑆 < (𝑈 + 𝑇)))
6159, 60mpbird 260 . . . . . . . . 9 (𝜑 → (𝑆𝑈) < 𝑇)
6254, 61eqbrtrd 5052 . . . . . . . 8 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
63 neeq1 3049 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
64 fvoveq1 7158 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
6564breq1d 5040 . . . . . . . . . . 11 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
6663, 65anbi12d 633 . . . . . . . . . 10 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
67 fveq2 6645 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
6867oveq1d 7150 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
69 oveq1 7142 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
7068, 69oveq12d 7153 . . . . . . . . . . . 12 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
7170fvoveq1d 7157 . . . . . . . . . . 11 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
7271breq1d 5040 . . . . . . . . . 10 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7366, 72imbi12d 348 . . . . . . . . 9 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))))
74 dvferm1.l . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
7524simpld 498 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
7613simpld 498 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑈)
7775, 32, 76xrltled 12531 . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
78 iooss1 12761 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴𝑈) → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
7975, 77, 78syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑈(,)𝐵) ⊆ (𝐴(,)𝐵))
80 dvferm.s . . . . . . . . . . . 12 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
8179, 80sstrd 3925 . . . . . . . . . . 11 (𝜑 → (𝑈(,)𝐵) ⊆ 𝑋)
8252rexrd 10680 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ*)
83 xrmin1 12558 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑈 + 𝑇) ∈ ℝ*) → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8425, 28, 83syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → if(𝐵 ≤ (𝑈 + 𝑇), 𝐵, (𝑈 + 𝑇)) ≤ 𝐵)
8582, 29, 25, 58, 84xrltletrd 12542 . . . . . . . . . . . 12 (𝜑𝑆 < 𝐵)
86 elioo2 12767 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8732, 25, 86syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ (𝑈(,)𝐵) ↔ (𝑆 ∈ ℝ ∧ 𝑈 < 𝑆𝑆 < 𝐵)))
8852, 48, 85, 87mpbir3and 1339 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑈(,)𝐵))
8981, 88sseldd 3916 . . . . . . . . . 10 (𝜑𝑆𝑋)
90 eldifsn 4680 . . . . . . . . . 10 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
9189, 49, 90sylanbrc 586 . . . . . . . . 9 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
9273, 74, 91rspcdva 3573 . . . . . . . 8 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈)))
9349, 62, 92mp2and 698 . . . . . . 7 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈))
941, 89ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐹𝑆) ∈ ℝ)
9580, 10sseldd 3916 . . . . . . . . . . 11 (𝜑𝑈𝑋)
961, 95ffvelrnd 6829 . . . . . . . . . 10 (𝜑 → (𝐹𝑈) ∈ ℝ)
9794, 96resubcld 11057 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
9852, 11resubcld 11057 . . . . . . . . . 10 (𝜑 → (𝑆𝑈) ∈ ℝ)
9911, 52posdifd 11216 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝑆 ↔ 0 < (𝑆𝑈)))
10048, 99mpbid 235 . . . . . . . . . 10 (𝜑 → 0 < (𝑆𝑈))
10198, 100elrpd 12416 . . . . . . . . 9 (𝜑 → (𝑆𝑈) ∈ ℝ+)
10297, 101rerpdivcld 12450 . . . . . . . 8 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
103102, 6, 6absdifltd 14785 . . . . . . 7 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < ((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈)))))
10493, 103mpbid 235 . . . . . 6 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + ((ℝ D 𝐹)‘𝑈))))
105104simpld 498 . . . . 5 (𝜑 → (((ℝ D 𝐹)‘𝑈) − ((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
1068, 105eqbrtrrd 5054 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
107 gt0div 11495 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ (𝑆𝑈) ∈ ℝ ∧ 0 < (𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
10897, 98, 100, 107syl3anc 1368 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
109106, 108mpbird 260 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11096, 94posdifd 11216 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
111109, 110mpbird 260 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
112 fveq2 6645 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
113112breq1d 5040 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
114 dvferm1.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝑈(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
115113, 114, 88rspcdva 3573 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
11694, 96, 115lensymd 10780 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
117111, 116pm2.65i 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  c0 4243  ifcif 4425  {csn 4525   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  abscabs 14585   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvferm1  24588
  Copyright terms: Public domain W3C validator