Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem13 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15952. There is no function that maps ℕ onto ℝ. (Use nex 1803 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
ruclem13 | ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6691 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ) | |
2 | 1 | difeq2d 4057 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ)) |
3 | difid 4304 | . . 3 ⊢ (ℝ ∖ ℝ) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅) |
5 | reex 10962 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | 5, 5 | xpex 7603 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
7 | 6, 5 | mpoex 7920 | . . . 4 ⊢ (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) ∈ V |
8 | 7 | isseti 3447 | . . 3 ⊢ ∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
9 | fof 6688 | . . . . . . . 8 ⊢ (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ) | |
10 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝐹:ℕ⟶ℝ) |
11 | simpr 485 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
12 | eqid 2738 | . . . . . . 7 ⊢ ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
13 | eqid 2738 | . . . . . . 7 ⊢ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) = seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) | |
14 | eqid 2738 | . . . . . . 7 ⊢ sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) | |
15 | 10, 11, 12, 13, 14 | ruclem12 15950 | . . . . . 6 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹)) |
16 | n0i 4267 | . . . . . 6 ⊢ (sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → ¬ (ℝ ∖ ran 𝐹) = ∅) |
18 | 17 | ex 413 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
19 | 18 | exlimdv 1936 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
20 | 8, 19 | mpi 20 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅) |
21 | 4, 20 | pm2.65i 193 | 1 ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⦋csb 3832 ∖ cdif 3884 ∪ cun 3885 ∅c0 4256 ifcif 4459 {csn 4561 〈cop 4567 class class class wbr 5074 × cxp 5587 ran crn 5590 ∘ ccom 5593 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 supcsup 9199 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 / cdiv 11632 ℕcn 11973 2c2 12028 seqcseq 13721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 |
This theorem is referenced by: ruc 15952 |
Copyright terms: Public domain | W3C validator |