![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem13 | Structured version Visualization version GIF version |
Description: Lemma for ruc 16291. There is no function that maps ℕ onto ℝ. (Use nex 1798 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
ruclem13 | ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6837 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ) | |
2 | 1 | difeq2d 4149 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ)) |
3 | difid 4398 | . . 3 ⊢ (ℝ ∖ ℝ) = ∅ | |
4 | 2, 3 | eqtrdi 2796 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅) |
5 | reex 11275 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | 5, 5 | xpex 7788 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
7 | 6, 5 | mpoex 8120 | . . . 4 ⊢ (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) ∈ V |
8 | 7 | isseti 3506 | . . 3 ⊢ ∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
9 | fof 6834 | . . . . . . . 8 ⊢ (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝐹:ℕ⟶ℝ) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
12 | eqid 2740 | . . . . . . 7 ⊢ ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
13 | eqid 2740 | . . . . . . 7 ⊢ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) = seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) | |
14 | eqid 2740 | . . . . . . 7 ⊢ sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) | |
15 | 10, 11, 12, 13, 14 | ruclem12 16289 | . . . . . 6 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹)) |
16 | n0i 4363 | . . . . . 6 ⊢ (sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → ¬ (ℝ ∖ ran 𝐹) = ∅) |
18 | 17 | ex 412 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
19 | 18 | exlimdv 1932 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
20 | 8, 19 | mpi 20 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅) |
21 | 4, 20 | pm2.65i 194 | 1 ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ⦋csb 3921 ∖ cdif 3973 ∪ cun 3974 ∅c0 4352 ifcif 4548 {csn 4648 〈cop 4654 class class class wbr 5166 × cxp 5698 ran crn 5701 ∘ ccom 5704 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 2nd c2nd 8029 supcsup 9509 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 / cdiv 11947 ℕcn 12293 2c2 12348 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 |
This theorem is referenced by: ruc 16291 |
Copyright terms: Public domain | W3C validator |