MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem13 Structured version   Visualization version   GIF version

Theorem ruclem13 16116
Description: Lemma for ruc 16117. There is no function that maps onto . (Use nex 1802 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
ruclem13 ¬ 𝐹:ℕ–onto→ℝ

Proof of Theorem ruclem13
Dummy variables 𝑚 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 forn 6756 . . . 4 (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ)
21difeq2d 4080 . . 3 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ))
3 difid 4328 . . 3 (ℝ ∖ ℝ) = ∅
42, 3eqtrdi 2792 . 2 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅)
5 reex 11138 . . . . . 6 ℝ ∈ V
65, 5xpex 7683 . . . . 5 (ℝ × ℝ) ∈ V
76, 5mpoex 8008 . . . 4 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) ∈ V
87isseti 3458 . . 3 𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
9 fof 6753 . . . . . . . 8 (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ)
109adantr 481 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝐹:ℕ⟶ℝ)
11 simpr 485 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
12 eqid 2736 . . . . . . 7 ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
13 eqid 2736 . . . . . . 7 seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)) = seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))
14 eqid 2736 . . . . . . 7 sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < )
1510, 11, 12, 13, 14ruclem12 16115 . . . . . 6 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹))
16 n0i 4291 . . . . . 6 (sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1715, 16syl 17 . . . . 5 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1817ex 413 . . . 4 (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
1918exlimdv 1936 . . 3 (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
208, 19mpi 20 . 2 (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅)
214, 20pm2.65i 193 1 ¬ 𝐹:ℕ–onto→ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wex 1781  wcel 2106  csb 3853  cdif 3905  cun 3906  c0 4280  ifcif 4484  {csn 4584  cop 4590   class class class wbr 5103   × cxp 5629  ran crn 5632  ccom 5635  wf 6489  ontowfo 6491  cfv 6493  (class class class)co 7353  cmpo 7355  1st c1st 7915  2nd c2nd 7916  supcsup 9372  cr 11046  0cc0 11047  1c1 11048   + caddc 11050   < clt 11185   / cdiv 11808  cn 12149  2c2 12204  seqcseq 13898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9374  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-n0 12410  df-z 12496  df-uz 12760  df-fz 13417  df-seq 13899
This theorem is referenced by:  ruc  16117
  Copyright terms: Public domain W3C validator