Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem13 Structured version   Visualization version   GIF version

Theorem ruclem13 15571
 Description: Lemma for ruc 15572. There is no function that maps ℕ onto ℝ. (Use nex 1801 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
ruclem13 ¬ 𝐹:ℕ–onto→ℝ

Proof of Theorem ruclem13
Dummy variables 𝑚 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 forn 6565 . . . 4 (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ)
21difeq2d 4074 . . 3 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ))
3 difid 4302 . . 3 (ℝ ∖ ℝ) = ∅
42, 3syl6eq 2871 . 2 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅)
5 reex 10602 . . . . . 6 ℝ ∈ V
65, 5xpex 7450 . . . . 5 (ℝ × ℝ) ∈ V
76, 5mpoex 7751 . . . 4 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) ∈ V
87isseti 3484 . . 3 𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
9 fof 6562 . . . . . . . 8 (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ)
109adantr 483 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝐹:ℕ⟶ℝ)
11 simpr 487 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
12 eqid 2820 . . . . . . 7 ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
13 eqid 2820 . . . . . . 7 seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)) = seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))
14 eqid 2820 . . . . . . 7 sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < )
1510, 11, 12, 13, 14ruclem12 15570 . . . . . 6 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹))
16 n0i 4271 . . . . . 6 (sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1715, 16syl 17 . . . . 5 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1817ex 415 . . . 4 (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
1918exlimdv 1934 . . 3 (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
208, 19mpi 20 . 2 (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅)
214, 20pm2.65i 196 1 ¬ 𝐹:ℕ–onto→ℝ
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 398   = wceq 1537  ∃wex 1780   ∈ wcel 2114  ⦋csb 3856   ∖ cdif 3906   ∪ cun 3907  ∅c0 4265  ifcif 4439  {csn 4539  ⟨cop 4545   class class class wbr 5038   × cxp 5525  ran crn 5528   ∘ ccom 5531  ⟶wf 6323  –onto→wfo 6325  ‘cfv 6327  (class class class)co 7129   ∈ cmpo 7131  1st c1st 7661  2nd c2nd 7662  supcsup 8878  ℝcr 10510  0cc0 10511  1c1 10512   + caddc 10514   < clt 10649   / cdiv 11271  ℕcn 11612  2c2 11667  seqcseq 13349 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-sup 8880  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-n0 11873  df-z 11957  df-uz 12219  df-fz 12873  df-seq 13350 This theorem is referenced by:  ruc  15572
 Copyright terms: Public domain W3C validator