MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem13 Structured version   Visualization version   GIF version

Theorem ruclem13 15571
Description: Lemma for ruc 15572. There is no function that maps onto . (Use nex 1801 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
ruclem13 ¬ 𝐹:ℕ–onto→ℝ

Proof of Theorem ruclem13
Dummy variables 𝑚 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 forn 6565 . . . 4 (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ)
21difeq2d 4074 . . 3 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ))
3 difid 4302 . . 3 (ℝ ∖ ℝ) = ∅
42, 3syl6eq 2871 . 2 (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅)
5 reex 10602 . . . . . 6 ℝ ∈ V
65, 5xpex 7450 . . . . 5 (ℝ × ℝ) ∈ V
76, 5mpoex 7751 . . . 4 (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) ∈ V
87isseti 3484 . . 3 𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))
9 fof 6562 . . . . . . . 8 (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ)
109adantr 483 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝐹:ℕ⟶ℝ)
11 simpr 487 . . . . . . 7 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
12 eqid 2820 . . . . . . 7 ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹) = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
13 eqid 2820 . . . . . . 7 seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)) = seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))
14 eqid 2820 . . . . . . 7 sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < )
1510, 11, 12, 13, 14ruclem12 15570 . . . . . 6 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹))
16 n0i 4271 . . . . . 6 (sup(ran (1st ∘ seq0(𝑑, ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1715, 16syl 17 . . . . 5 ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩))) → ¬ (ℝ ∖ ran 𝐹) = ∅)
1817ex 415 . . . 4 (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
1918exlimdv 1934 . . 3 (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)) → ¬ (ℝ ∖ ran 𝐹) = ∅))
208, 19mpi 20 . 2 (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅)
214, 20pm2.65i 196 1 ¬ 𝐹:ℕ–onto→ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wex 1780  wcel 2114  csb 3856  cdif 3906  cun 3907  c0 4265  ifcif 4439  {csn 4539  cop 4545   class class class wbr 5038   × cxp 5525  ran crn 5528  ccom 5531  wf 6323  ontowfo 6325  cfv 6327  (class class class)co 7129  cmpo 7131  1st c1st 7661  2nd c2nd 7662  supcsup 8878  cr 10510  0cc0 10511  1c1 10512   + caddc 10514   < clt 10649   / cdiv 11271  cn 11612  2c2 11667  seqcseq 13349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-sup 8880  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-n0 11873  df-z 11957  df-uz 12219  df-fz 12873  df-seq 13350
This theorem is referenced by:  ruc  15572
  Copyright terms: Public domain W3C validator