Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem13 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15880. There is no function that maps ℕ onto ℝ. (Use nex 1804 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
Ref | Expression |
---|---|
ruclem13 | ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn 6675 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ) | |
2 | 1 | difeq2d 4053 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ)) |
3 | difid 4301 | . . 3 ⊢ (ℝ ∖ ℝ) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅) |
5 | reex 10893 | . . . . . 6 ⊢ ℝ ∈ V | |
6 | 5, 5 | xpex 7581 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
7 | 6, 5 | mpoex 7893 | . . . 4 ⊢ (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) ∈ V |
8 | 7 | isseti 3437 | . . 3 ⊢ ∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
9 | fof 6672 | . . . . . . . 8 ⊢ (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ) | |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝐹:ℕ⟶ℝ) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
12 | eqid 2738 | . . . . . . 7 ⊢ ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
13 | eqid 2738 | . . . . . . 7 ⊢ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) = seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) | |
14 | eqid 2738 | . . . . . . 7 ⊢ sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) | |
15 | 10, 11, 12, 13, 14 | ruclem12 15878 | . . . . . 6 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹)) |
16 | n0i 4264 | . . . . . 6 ⊢ (sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → ¬ (ℝ ∖ ran 𝐹) = ∅) |
18 | 17 | ex 412 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
19 | 18 | exlimdv 1937 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
20 | 8, 19 | mpi 20 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅) |
21 | 4, 20 | pm2.65i 193 | 1 ⊢ ¬ 𝐹:ℕ–onto→ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ⦋csb 3828 ∖ cdif 3880 ∪ cun 3881 ∅c0 4253 ifcif 4456 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 ran crn 5581 ∘ ccom 5584 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 supcsup 9129 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 / cdiv 11562 ℕcn 11903 2c2 11958 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 |
This theorem is referenced by: ruc 15880 |
Copyright terms: Public domain | W3C validator |