| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16261. There is no function that maps ℕ onto ℝ. (Use nex 1800 if you want this in the form ¬ ∃𝑓𝑓:ℕ–onto→ℝ.) (Contributed by NM, 14-Oct-2004.) (Proof shortened by Fan Zheng, 6-Jun-2016.) |
| Ref | Expression |
|---|---|
| ruclem13 | ⊢ ¬ 𝐹:ℕ–onto→ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn 6793 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → ran 𝐹 = ℝ) | |
| 2 | 1 | difeq2d 4101 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = (ℝ ∖ ℝ)) |
| 3 | difid 4351 | . . 3 ⊢ (ℝ ∖ ℝ) = ∅ | |
| 4 | 2, 3 | eqtrdi 2786 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → (ℝ ∖ ran 𝐹) = ∅) |
| 5 | reex 11220 | . . . . . 6 ⊢ ℝ ∈ V | |
| 6 | 5, 5 | xpex 7747 | . . . . 5 ⊢ (ℝ × ℝ) ∈ V |
| 7 | 6, 5 | mpoex 8078 | . . . 4 ⊢ (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) ∈ V |
| 8 | 7 | isseti 3477 | . . 3 ⊢ ∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) |
| 9 | fof 6790 | . . . . . . . 8 ⊢ (𝐹:ℕ–onto→ℝ → 𝐹:ℕ⟶ℝ) | |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝐹:ℕ⟶ℝ) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) | |
| 12 | eqid 2735 | . . . . . . 7 ⊢ ({〈0, 〈0, 1〉〉} ∪ 𝐹) = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 13 | eqid 2735 | . . . . . . 7 ⊢ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) = seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹)) | |
| 14 | eqid 2735 | . . . . . . 7 ⊢ sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) = sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) | |
| 15 | 10, 11, 12, 13, 14 | ruclem12 16259 | . . . . . 6 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹)) |
| 16 | n0i 4315 | . . . . . 6 ⊢ (sup(ran (1st ∘ seq0(𝑑, ({〈0, 〈0, 1〉〉} ∪ 𝐹))), ℝ, < ) ∈ (ℝ ∖ ran 𝐹) → ¬ (ℝ ∖ ran 𝐹) = ∅) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝐹:ℕ–onto→ℝ ∧ 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) → ¬ (ℝ ∖ ran 𝐹) = ∅) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝐹:ℕ–onto→ℝ → (𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
| 19 | 18 | exlimdv 1933 | . . 3 ⊢ (𝐹:ℕ–onto→ℝ → (∃𝑑 𝑑 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉)) → ¬ (ℝ ∖ ran 𝐹) = ∅)) |
| 20 | 8, 19 | mpi 20 | . 2 ⊢ (𝐹:ℕ–onto→ℝ → ¬ (ℝ ∖ ran 𝐹) = ∅) |
| 21 | 4, 20 | pm2.65i 194 | 1 ⊢ ¬ 𝐹:ℕ–onto→ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ⦋csb 3874 ∖ cdif 3923 ∪ cun 3924 ∅c0 4308 ifcif 4500 {csn 4601 〈cop 4607 class class class wbr 5119 × cxp 5652 ran crn 5655 ∘ ccom 5658 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 supcsup 9452 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 / cdiv 11894 ℕcn 12240 2c2 12295 seqcseq 14019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 |
| This theorem is referenced by: ruc 16261 |
| Copyright terms: Public domain | W3C validator |