MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Visualization version   GIF version

Theorem dvferm2lem 25906
Description: Lemma for dvferm 25908. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm2.z (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0)
dvferm2.t (𝜑𝑇 ∈ ℝ+)
dvferm2.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
dvferm2.x 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
Assertion
Ref Expression
dvferm2lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm2.x . . . . . . . . . . . 12 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
2 mnfxr 11191 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
32a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
4 ioossre 13328 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)𝐵) ⊆ ℝ
5 dvferm.u . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (𝐴(,)𝐵))
64, 5sselid 3935 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
7 dvferm2.t . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ+)
87rpred 12955 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
96, 8resubcld 11566 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑇) ∈ ℝ)
109rexrd 11184 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ∈ ℝ*)
11 ne0i 4294 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
12 ndmioo 13293 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
1312necon1ai 2952 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
145, 11, 133syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1514simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1610, 15ifcld 4525 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*)
176rexrd 11184 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
189mnfltd 13044 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < (𝑈𝑇))
19 xrmax2 13096 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
2015, 10, 19syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
213, 10, 16, 18, 20xrltletrd 13081 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
226, 7ltsubrpd 12987 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) < 𝑈)
23 eliooord 13326 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
245, 23syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
2524simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 < 𝑈)
26 breq1 5098 . . . . . . . . . . . . . . . . 17 ((𝑈𝑇) = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → ((𝑈𝑇) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
27 breq1 5098 . . . . . . . . . . . . . . . . 17 (𝐴 = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → (𝐴 < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
2826, 27ifboth 4518 . . . . . . . . . . . . . . . 16 (((𝑈𝑇) < 𝑈𝐴 < 𝑈) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
2922, 25, 28syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
30 xrre2 13090 . . . . . . . . . . . . . . 15 (((-∞ ∈ ℝ* ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*𝑈 ∈ ℝ*) ∧ (-∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
313, 16, 17, 21, 29, 30syl32anc 1380 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
3231, 6readdcld 11163 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) ∈ ℝ)
3332rehalfcld 12389 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) ∈ ℝ)
341, 33eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
35 avglt2 12381 . . . . . . . . . . . . . 14 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3631, 6, 35syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3729, 36mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈)
381, 37eqbrtrid 5130 . . . . . . . . . . 11 (𝜑𝑆 < 𝑈)
3934, 38ltned 11270 . . . . . . . . . 10 (𝜑𝑆𝑈)
4034, 6, 38ltled 11282 . . . . . . . . . . . 12 (𝜑𝑆𝑈)
4134, 6, 40abssuble0d 15360 . . . . . . . . . . 11 (𝜑 → (abs‘(𝑆𝑈)) = (𝑈𝑆))
42 avglt1 12380 . . . . . . . . . . . . . . . 16 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4331, 6, 42syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4429, 43mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2))
4544, 1breqtrrdi 5137 . . . . . . . . . . . . 13 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑆)
469, 31, 34, 20, 45lelttrd 11292 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑇) < 𝑆)
476, 8, 34, 46ltsub23d 11743 . . . . . . . . . . 11 (𝜑 → (𝑈𝑆) < 𝑇)
4841, 47eqbrtrd 5117 . . . . . . . . . 10 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
49 neeq1 2987 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
50 fvoveq1 7376 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
5150breq1d 5105 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
5249, 51anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
53 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
5453oveq1d 7368 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
55 oveq1 7360 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
5654, 55oveq12d 7371 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
5756fvoveq1d 7375 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
5857breq1d 5105 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5952, 58imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
60 dvferm2.l . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6114simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
6224simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑈 < 𝐵)
6317, 61, 62xrltled 13070 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐵)
64 iooss2 13302 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑈𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
66 dvferm.s . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
6765, 66sstrd 3948 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑈) ⊆ 𝑋)
6834rexrd 11184 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℝ*)
69 xrmax1 13095 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7015, 10, 69syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7115, 16, 68, 70, 45xrlelttrd 13080 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑆)
72 elioo2 13307 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝑈 ∈ ℝ*) → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7315, 17, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7434, 71, 38, 73mpbir3and 1343 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐴(,)𝑈))
7567, 74sseldd 3938 . . . . . . . . . . . 12 (𝜑𝑆𝑋)
76 eldifsn 4740 . . . . . . . . . . . 12 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
7775, 39, 76sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
7859, 60, 77rspcdva 3580 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
7939, 48, 78mp2and 699 . . . . . . . . 9 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))
80 dvferm.a . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
8180, 75ffvelcdmd 7023 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆) ∈ ℝ)
8266, 5sseldd 3938 . . . . . . . . . . . . 13 (𝜑𝑈𝑋)
8380, 82ffvelcdmd 7023 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑈) ∈ ℝ)
8481, 83resubcld 11566 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
8534, 6resubcld 11566 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ∈ ℝ)
8634recnd 11162 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂ)
876recnd 11162 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
8886, 87, 39subne0d 11502 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ≠ 0)
8984, 85, 88redivcld 11970 . . . . . . . . . 10 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
90 dvferm.b . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℝ)
91 dvfre 25871 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
9280, 90, 91syl2anc 584 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
93 dvferm.d . . . . . . . . . . 11 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
9492, 93ffvelcdmd 7023 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9594renegcld 11565 . . . . . . . . . 10 (𝜑 → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9689, 94, 95absdifltd 15361 . . . . . . . . 9 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))))
9779, 96mpbid 232 . . . . . . . 8 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈))))
9897simprd 495 . . . . . . 7 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))
9994recnd 11162 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
10099negidd 11483 . . . . . . 7 (𝜑 → (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)) = 0)
10198, 100breqtrd 5121 . . . . . 6 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0)
10289lt0neg1d 11707 . . . . . 6 (𝜑 → ((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0 ↔ 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
103101, 102mpbid 232 . . . . 5 (𝜑 → 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
10484recnd 11162 . . . . . 6 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℂ)
10585recnd 11162 . . . . . 6 (𝜑 → (𝑆𝑈) ∈ ℂ)
106104, 105, 88divneg2d 11932 . . . . 5 (𝜑 → -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
107103, 106breqtrd 5121 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
10885renegcld 11565 . . . . 5 (𝜑 → -(𝑆𝑈) ∈ ℝ)
10934, 6posdifd 11725 . . . . . . 7 (𝜑 → (𝑆 < 𝑈 ↔ 0 < (𝑈𝑆)))
11038, 109mpbid 232 . . . . . 6 (𝜑 → 0 < (𝑈𝑆))
11186, 87negsubdi2d 11509 . . . . . 6 (𝜑 → -(𝑆𝑈) = (𝑈𝑆))
112110, 111breqtrrd 5123 . . . . 5 (𝜑 → 0 < -(𝑆𝑈))
113 gt0div 12009 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ -(𝑆𝑈) ∈ ℝ ∧ 0 < -(𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
11484, 108, 112, 113syl3anc 1373 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
115107, 114mpbird 257 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11683, 81posdifd 11725 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
117115, 116mpbird 257 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
118 fveq2 6826 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
119118breq1d 5105 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
120 dvferm2.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
121119, 120, 74rspcdva 3580 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
12281, 83, 121lensymd 11285 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
123117, 122pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3902  wss 3905  c0 4286  ifcif 4478  {csn 4579   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   + caddc 11031  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  +crp 12911  (,)cioo 13266  abscabs 15159   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-cncf 24787  df-limc 25783  df-dv 25784
This theorem is referenced by:  dvferm2  25907
  Copyright terms: Public domain W3C validator