MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Visualization version   GIF version

Theorem dvferm2lem 26024
Description: Lemma for dvferm 26026. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm2.z (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0)
dvferm2.t (𝜑𝑇 ∈ ℝ+)
dvferm2.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
dvferm2.x 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
Assertion
Ref Expression
dvferm2lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm2.x . . . . . . . . . . . 12 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
2 mnfxr 11318 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
32a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
4 ioossre 13448 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)𝐵) ⊆ ℝ
5 dvferm.u . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (𝐴(,)𝐵))
64, 5sselid 3981 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
7 dvferm2.t . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ+)
87rpred 13077 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
96, 8resubcld 11691 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑇) ∈ ℝ)
109rexrd 11311 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ∈ ℝ*)
11 ne0i 4341 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
12 ndmioo 13414 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
1312necon1ai 2968 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
145, 11, 133syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1514simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1610, 15ifcld 4572 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*)
176rexrd 11311 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
189mnfltd 13166 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < (𝑈𝑇))
19 xrmax2 13218 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
2015, 10, 19syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
213, 10, 16, 18, 20xrltletrd 13203 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
226, 7ltsubrpd 13109 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) < 𝑈)
23 eliooord 13446 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
245, 23syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
2524simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 < 𝑈)
26 breq1 5146 . . . . . . . . . . . . . . . . 17 ((𝑈𝑇) = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → ((𝑈𝑇) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
27 breq1 5146 . . . . . . . . . . . . . . . . 17 (𝐴 = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → (𝐴 < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
2826, 27ifboth 4565 . . . . . . . . . . . . . . . 16 (((𝑈𝑇) < 𝑈𝐴 < 𝑈) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
2922, 25, 28syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
30 xrre2 13212 . . . . . . . . . . . . . . 15 (((-∞ ∈ ℝ* ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*𝑈 ∈ ℝ*) ∧ (-∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
313, 16, 17, 21, 29, 30syl32anc 1380 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
3231, 6readdcld 11290 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) ∈ ℝ)
3332rehalfcld 12513 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) ∈ ℝ)
341, 33eqeltrid 2845 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
35 avglt2 12505 . . . . . . . . . . . . . 14 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3631, 6, 35syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3729, 36mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈)
381, 37eqbrtrid 5178 . . . . . . . . . . 11 (𝜑𝑆 < 𝑈)
3934, 38ltned 11397 . . . . . . . . . 10 (𝜑𝑆𝑈)
4034, 6, 38ltled 11409 . . . . . . . . . . . 12 (𝜑𝑆𝑈)
4134, 6, 40abssuble0d 15471 . . . . . . . . . . 11 (𝜑 → (abs‘(𝑆𝑈)) = (𝑈𝑆))
42 avglt1 12504 . . . . . . . . . . . . . . . 16 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4331, 6, 42syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4429, 43mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2))
4544, 1breqtrrdi 5185 . . . . . . . . . . . . 13 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑆)
469, 31, 34, 20, 45lelttrd 11419 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑇) < 𝑆)
476, 8, 34, 46ltsub23d 11868 . . . . . . . . . . 11 (𝜑 → (𝑈𝑆) < 𝑇)
4841, 47eqbrtrd 5165 . . . . . . . . . 10 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
49 neeq1 3003 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
50 fvoveq1 7454 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
5150breq1d 5153 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
5249, 51anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
53 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
5453oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
55 oveq1 7438 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
5654, 55oveq12d 7449 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
5756fvoveq1d 7453 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
5857breq1d 5153 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5952, 58imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
60 dvferm2.l . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6114simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
6224simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑈 < 𝐵)
6317, 61, 62xrltled 13192 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐵)
64 iooss2 13423 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑈𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
66 dvferm.s . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
6765, 66sstrd 3994 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑈) ⊆ 𝑋)
6834rexrd 11311 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℝ*)
69 xrmax1 13217 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7015, 10, 69syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7115, 16, 68, 70, 45xrlelttrd 13202 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑆)
72 elioo2 13428 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝑈 ∈ ℝ*) → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7315, 17, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7434, 71, 38, 73mpbir3and 1343 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐴(,)𝑈))
7567, 74sseldd 3984 . . . . . . . . . . . 12 (𝜑𝑆𝑋)
76 eldifsn 4786 . . . . . . . . . . . 12 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
7775, 39, 76sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
7859, 60, 77rspcdva 3623 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
7939, 48, 78mp2and 699 . . . . . . . . 9 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))
80 dvferm.a . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
8180, 75ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆) ∈ ℝ)
8266, 5sseldd 3984 . . . . . . . . . . . . 13 (𝜑𝑈𝑋)
8380, 82ffvelcdmd 7105 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑈) ∈ ℝ)
8481, 83resubcld 11691 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
8534, 6resubcld 11691 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ∈ ℝ)
8634recnd 11289 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂ)
876recnd 11289 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
8886, 87, 39subne0d 11629 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ≠ 0)
8984, 85, 88redivcld 12095 . . . . . . . . . 10 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
90 dvferm.b . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℝ)
91 dvfre 25989 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
9280, 90, 91syl2anc 584 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
93 dvferm.d . . . . . . . . . . 11 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
9492, 93ffvelcdmd 7105 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9594renegcld 11690 . . . . . . . . . 10 (𝜑 → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9689, 94, 95absdifltd 15472 . . . . . . . . 9 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))))
9779, 96mpbid 232 . . . . . . . 8 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈))))
9897simprd 495 . . . . . . 7 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))
9994recnd 11289 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
10099negidd 11610 . . . . . . 7 (𝜑 → (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)) = 0)
10198, 100breqtrd 5169 . . . . . 6 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0)
10289lt0neg1d 11832 . . . . . 6 (𝜑 → ((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0 ↔ 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
103101, 102mpbid 232 . . . . 5 (𝜑 → 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
10484recnd 11289 . . . . . 6 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℂ)
10585recnd 11289 . . . . . 6 (𝜑 → (𝑆𝑈) ∈ ℂ)
106104, 105, 88divneg2d 12057 . . . . 5 (𝜑 → -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
107103, 106breqtrd 5169 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
10885renegcld 11690 . . . . 5 (𝜑 → -(𝑆𝑈) ∈ ℝ)
10934, 6posdifd 11850 . . . . . . 7 (𝜑 → (𝑆 < 𝑈 ↔ 0 < (𝑈𝑆)))
11038, 109mpbid 232 . . . . . 6 (𝜑 → 0 < (𝑈𝑆))
11186, 87negsubdi2d 11636 . . . . . 6 (𝜑 → -(𝑆𝑈) = (𝑈𝑆))
112110, 111breqtrrd 5171 . . . . 5 (𝜑 → 0 < -(𝑆𝑈))
113 gt0div 12134 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ -(𝑆𝑈) ∈ ℝ ∧ 0 < -(𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
11484, 108, 112, 113syl3anc 1373 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
115107, 114mpbird 257 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11683, 81posdifd 11850 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
117115, 116mpbird 257 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
118 fveq2 6906 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
119118breq1d 5153 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
120 dvferm2.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
121119, 120, 74rspcdva 3623 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
12281, 83, 121lensymd 11412 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
123117, 122pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948  wss 3951  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  abscabs 15273   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvferm2  26025
  Copyright terms: Public domain W3C validator