MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Visualization version   GIF version

Theorem dvferm2lem 26044
Description: Lemma for dvferm 26046. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm2.z (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0)
dvferm2.t (𝜑𝑇 ∈ ℝ+)
dvferm2.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
dvferm2.x 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
Assertion
Ref Expression
dvferm2lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm2.x . . . . . . . . . . . 12 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
2 mnfxr 11347 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
32a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
4 ioossre 13468 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)𝐵) ⊆ ℝ
5 dvferm.u . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (𝐴(,)𝐵))
64, 5sselid 4006 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
7 dvferm2.t . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ+)
87rpred 13099 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
96, 8resubcld 11718 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑇) ∈ ℝ)
109rexrd 11340 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ∈ ℝ*)
11 ne0i 4364 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
12 ndmioo 13434 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
1312necon1ai 2974 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
145, 11, 133syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1514simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1610, 15ifcld 4594 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*)
176rexrd 11340 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
189mnfltd 13187 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < (𝑈𝑇))
19 xrmax2 13238 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
2015, 10, 19syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
213, 10, 16, 18, 20xrltletrd 13223 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
226, 7ltsubrpd 13131 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) < 𝑈)
23 eliooord 13466 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
245, 23syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
2524simpld 494 . . . . . . . . . . . . . . . 16 (𝜑𝐴 < 𝑈)
26 breq1 5169 . . . . . . . . . . . . . . . . 17 ((𝑈𝑇) = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → ((𝑈𝑇) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
27 breq1 5169 . . . . . . . . . . . . . . . . 17 (𝐴 = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → (𝐴 < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
2826, 27ifboth 4587 . . . . . . . . . . . . . . . 16 (((𝑈𝑇) < 𝑈𝐴 < 𝑈) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
2922, 25, 28syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
30 xrre2 13232 . . . . . . . . . . . . . . 15 (((-∞ ∈ ℝ* ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*𝑈 ∈ ℝ*) ∧ (-∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
313, 16, 17, 21, 29, 30syl32anc 1378 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
3231, 6readdcld 11319 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) ∈ ℝ)
3332rehalfcld 12540 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) ∈ ℝ)
341, 33eqeltrid 2848 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
35 avglt2 12532 . . . . . . . . . . . . . 14 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3631, 6, 35syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3729, 36mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈)
381, 37eqbrtrid 5201 . . . . . . . . . . 11 (𝜑𝑆 < 𝑈)
3934, 38ltned 11426 . . . . . . . . . 10 (𝜑𝑆𝑈)
4034, 6, 38ltled 11438 . . . . . . . . . . . 12 (𝜑𝑆𝑈)
4134, 6, 40abssuble0d 15481 . . . . . . . . . . 11 (𝜑 → (abs‘(𝑆𝑈)) = (𝑈𝑆))
42 avglt1 12531 . . . . . . . . . . . . . . . 16 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4331, 6, 42syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4429, 43mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2))
4544, 1breqtrrdi 5208 . . . . . . . . . . . . 13 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑆)
469, 31, 34, 20, 45lelttrd 11448 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑇) < 𝑆)
476, 8, 34, 46ltsub23d 11895 . . . . . . . . . . 11 (𝜑 → (𝑈𝑆) < 𝑇)
4841, 47eqbrtrd 5188 . . . . . . . . . 10 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
49 neeq1 3009 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
50 fvoveq1 7471 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
5150breq1d 5176 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
5249, 51anbi12d 631 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
53 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
5453oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
55 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
5654, 55oveq12d 7466 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
5756fvoveq1d 7470 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
5857breq1d 5176 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5952, 58imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
60 dvferm2.l . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6114simprd 495 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
6224simprd 495 . . . . . . . . . . . . . . . 16 (𝜑𝑈 < 𝐵)
6317, 61, 62xrltled 13212 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐵)
64 iooss2 13443 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑈𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
6561, 63, 64syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
66 dvferm.s . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
6765, 66sstrd 4019 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑈) ⊆ 𝑋)
6834rexrd 11340 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℝ*)
69 xrmax1 13237 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7015, 10, 69syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7115, 16, 68, 70, 45xrlelttrd 13222 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑆)
72 elioo2 13448 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝑈 ∈ ℝ*) → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7315, 17, 72syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7434, 71, 38, 73mpbir3and 1342 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐴(,)𝑈))
7567, 74sseldd 4009 . . . . . . . . . . . 12 (𝜑𝑆𝑋)
76 eldifsn 4811 . . . . . . . . . . . 12 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
7775, 39, 76sylanbrc 582 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
7859, 60, 77rspcdva 3636 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
7939, 48, 78mp2and 698 . . . . . . . . 9 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))
80 dvferm.a . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
8180, 75ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆) ∈ ℝ)
8266, 5sseldd 4009 . . . . . . . . . . . . 13 (𝜑𝑈𝑋)
8380, 82ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑈) ∈ ℝ)
8481, 83resubcld 11718 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
8534, 6resubcld 11718 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ∈ ℝ)
8634recnd 11318 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂ)
876recnd 11318 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
8886, 87, 39subne0d 11656 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ≠ 0)
8984, 85, 88redivcld 12122 . . . . . . . . . 10 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
90 dvferm.b . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℝ)
91 dvfre 26009 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
9280, 90, 91syl2anc 583 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
93 dvferm.d . . . . . . . . . . 11 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
9492, 93ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9594renegcld 11717 . . . . . . . . . 10 (𝜑 → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9689, 94, 95absdifltd 15482 . . . . . . . . 9 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))))
9779, 96mpbid 232 . . . . . . . 8 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈))))
9897simprd 495 . . . . . . 7 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))
9994recnd 11318 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
10099negidd 11637 . . . . . . 7 (𝜑 → (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)) = 0)
10198, 100breqtrd 5192 . . . . . 6 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0)
10289lt0neg1d 11859 . . . . . 6 (𝜑 → ((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0 ↔ 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
103101, 102mpbid 232 . . . . 5 (𝜑 → 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
10484recnd 11318 . . . . . 6 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℂ)
10585recnd 11318 . . . . . 6 (𝜑 → (𝑆𝑈) ∈ ℂ)
106104, 105, 88divneg2d 12084 . . . . 5 (𝜑 → -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
107103, 106breqtrd 5192 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
10885renegcld 11717 . . . . 5 (𝜑 → -(𝑆𝑈) ∈ ℝ)
10934, 6posdifd 11877 . . . . . . 7 (𝜑 → (𝑆 < 𝑈 ↔ 0 < (𝑈𝑆)))
11038, 109mpbid 232 . . . . . 6 (𝜑 → 0 < (𝑈𝑆))
11186, 87negsubdi2d 11663 . . . . . 6 (𝜑 → -(𝑆𝑈) = (𝑈𝑆))
112110, 111breqtrrd 5194 . . . . 5 (𝜑 → 0 < -(𝑆𝑈))
113 gt0div 12161 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ -(𝑆𝑈) ∈ ℝ ∧ 0 < -(𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
11484, 108, 112, 113syl3anc 1371 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
115107, 114mpbird 257 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11683, 81posdifd 11877 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
117115, 116mpbird 257 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
118 fveq2 6920 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
119118breq1d 5176 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
120 dvferm2.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
121119, 120, 74rspcdva 3636 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
12281, 83, 121lensymd 11441 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
123117, 122pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  +crp 13057  (,)cioo 13407  abscabs 15283   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvferm2  26045
  Copyright terms: Public domain W3C validator