MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2lem Structured version   Visualization version   GIF version

Theorem dvferm2lem 25150
Description: Lemma for dvferm 25152. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a (𝜑𝐹:𝑋⟶ℝ)
dvferm.b (𝜑𝑋 ⊆ ℝ)
dvferm.u (𝜑𝑈 ∈ (𝐴(,)𝐵))
dvferm.s (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
dvferm.d (𝜑𝑈 ∈ dom (ℝ D 𝐹))
dvferm2.r (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
dvferm2.z (𝜑 → ((ℝ D 𝐹)‘𝑈) < 0)
dvferm2.t (𝜑𝑇 ∈ ℝ+)
dvferm2.l (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
dvferm2.x 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
Assertion
Ref Expression
dvferm2lem ¬ 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝐹,𝑧   𝑦,𝑈,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦   𝑦,𝑆,𝑧   𝑧,𝑇
Allowed substitution hints:   𝜑(𝑧)   𝑇(𝑦)

Proof of Theorem dvferm2lem
StepHypRef Expression
1 dvferm2.x . . . . . . . . . . . 12 𝑆 = ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)
2 mnfxr 11032 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
32a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -∞ ∈ ℝ*)
4 ioossre 13140 . . . . . . . . . . . . . . . . . . 19 (𝐴(,)𝐵) ⊆ ℝ
5 dvferm.u . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 ∈ (𝐴(,)𝐵))
64, 5sselid 3919 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ ℝ)
7 dvferm2.t . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ+)
87rpred 12772 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇 ∈ ℝ)
96, 8resubcld 11403 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈𝑇) ∈ ℝ)
109rexrd 11025 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ∈ ℝ*)
11 ne0i 4268 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅)
12 ndmioo 13106 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅)
1312necon1ai 2971 . . . . . . . . . . . . . . . . . 18 ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
145, 11, 133syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
1514simpld 495 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ*)
1610, 15ifcld 4505 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*)
176rexrd 11025 . . . . . . . . . . . . . . 15 (𝜑𝑈 ∈ ℝ*)
189mnfltd 12860 . . . . . . . . . . . . . . . 16 (𝜑 → -∞ < (𝑈𝑇))
19 xrmax2 12910 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
2015, 10, 19syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
213, 10, 16, 18, 20xrltletrd 12895 . . . . . . . . . . . . . . 15 (𝜑 → -∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
226, 7ltsubrpd 12804 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈𝑇) < 𝑈)
23 eliooord 13138 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑈𝑈 < 𝐵))
245, 23syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 < 𝑈𝑈 < 𝐵))
2524simpld 495 . . . . . . . . . . . . . . . 16 (𝜑𝐴 < 𝑈)
26 breq1 5077 . . . . . . . . . . . . . . . . 17 ((𝑈𝑇) = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → ((𝑈𝑇) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
27 breq1 5077 . . . . . . . . . . . . . . . . 17 (𝐴 = if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) → (𝐴 < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈))
2826, 27ifboth 4498 . . . . . . . . . . . . . . . 16 (((𝑈𝑇) < 𝑈𝐴 < 𝑈) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
2922, 25, 28syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)
30 xrre2 12904 . . . . . . . . . . . . . . 15 (((-∞ ∈ ℝ* ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ*𝑈 ∈ ℝ*) ∧ (-∞ < if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∧ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈)) → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
313, 16, 17, 21, 29, 30syl32anc 1377 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ)
3231, 6readdcld 11004 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) ∈ ℝ)
3332rehalfcld 12220 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) ∈ ℝ)
341, 33eqeltrid 2843 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ)
35 avglt2 12212 . . . . . . . . . . . . . 14 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3631, 6, 35syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈))
3729, 36mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2) < 𝑈)
381, 37eqbrtrid 5109 . . . . . . . . . . 11 (𝜑𝑆 < 𝑈)
3934, 38ltned 11111 . . . . . . . . . 10 (𝜑𝑆𝑈)
4034, 6, 38ltled 11123 . . . . . . . . . . . 12 (𝜑𝑆𝑈)
4134, 6, 40abssuble0d 15144 . . . . . . . . . . 11 (𝜑 → (abs‘(𝑆𝑈)) = (𝑈𝑆))
42 avglt1 12211 . . . . . . . . . . . . . . . 16 ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) ∈ ℝ ∧ 𝑈 ∈ ℝ) → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4331, 6, 42syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑈 ↔ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2)))
4429, 43mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < ((if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) + 𝑈) / 2))
4544, 1breqtrrdi 5116 . . . . . . . . . . . . 13 (𝜑 → if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴) < 𝑆)
469, 31, 34, 20, 45lelttrd 11133 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑇) < 𝑆)
476, 8, 34, 46ltsub23d 11580 . . . . . . . . . . 11 (𝜑 → (𝑈𝑆) < 𝑇)
4841, 47eqbrtrd 5096 . . . . . . . . . 10 (𝜑 → (abs‘(𝑆𝑈)) < 𝑇)
49 neeq1 3006 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (𝑧𝑈𝑆𝑈))
50 fvoveq1 7298 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (abs‘(𝑧𝑈)) = (abs‘(𝑆𝑈)))
5150breq1d 5084 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → ((abs‘(𝑧𝑈)) < 𝑇 ↔ (abs‘(𝑆𝑈)) < 𝑇))
5249, 51anbi12d 631 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) ↔ (𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇)))
53 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑆 → (𝐹𝑧) = (𝐹𝑆))
5453oveq1d 7290 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → ((𝐹𝑧) − (𝐹𝑈)) = ((𝐹𝑆) − (𝐹𝑈)))
55 oveq1 7282 . . . . . . . . . . . . . . 15 (𝑧 = 𝑆 → (𝑧𝑈) = (𝑆𝑈))
5654, 55oveq12d 7293 . . . . . . . . . . . . . 14 (𝑧 = 𝑆 → (((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
5756fvoveq1d 7297 . . . . . . . . . . . . 13 (𝑧 = 𝑆 → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) = (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))))
5857breq1d 5084 . . . . . . . . . . . 12 (𝑧 = 𝑆 → ((abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
5952, 58imbi12d 345 . . . . . . . . . . 11 (𝑧 = 𝑆 → (((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)) ↔ ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))))
60 dvferm2.l . . . . . . . . . . 11 (𝜑 → ∀𝑧 ∈ (𝑋 ∖ {𝑈})((𝑧𝑈 ∧ (abs‘(𝑧𝑈)) < 𝑇) → (abs‘((((𝐹𝑧) − (𝐹𝑈)) / (𝑧𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
6114simprd 496 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
6224simprd 496 . . . . . . . . . . . . . . . 16 (𝜑𝑈 < 𝐵)
6317, 61, 62xrltled 12884 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐵)
64 iooss2 13115 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑈𝐵) → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
6561, 63, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝑈) ⊆ (𝐴(,)𝐵))
66 dvferm.s . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ 𝑋)
6765, 66sstrd 3931 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝑈) ⊆ 𝑋)
6834rexrd 11025 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ ℝ*)
69 xrmax1 12909 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ (𝑈𝑇) ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7015, 10, 69syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝐴 ≤ if(𝐴 ≤ (𝑈𝑇), (𝑈𝑇), 𝐴))
7115, 16, 68, 70, 45xrlelttrd 12894 . . . . . . . . . . . . . 14 (𝜑𝐴 < 𝑆)
72 elioo2 13120 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝑈 ∈ ℝ*) → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7315, 17, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (𝐴(,)𝑈) ↔ (𝑆 ∈ ℝ ∧ 𝐴 < 𝑆𝑆 < 𝑈)))
7434, 71, 38, 73mpbir3and 1341 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (𝐴(,)𝑈))
7567, 74sseldd 3922 . . . . . . . . . . . 12 (𝜑𝑆𝑋)
76 eldifsn 4720 . . . . . . . . . . . 12 (𝑆 ∈ (𝑋 ∖ {𝑈}) ↔ (𝑆𝑋𝑆𝑈))
7775, 39, 76sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑆 ∈ (𝑋 ∖ {𝑈}))
7859, 60, 77rspcdva 3562 . . . . . . . . . 10 (𝜑 → ((𝑆𝑈 ∧ (abs‘(𝑆𝑈)) < 𝑇) → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈)))
7939, 48, 78mp2and 696 . . . . . . . . 9 (𝜑 → (abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈))
80 dvferm.a . . . . . . . . . . . . 13 (𝜑𝐹:𝑋⟶ℝ)
8180, 75ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆) ∈ ℝ)
8266, 5sseldd 3922 . . . . . . . . . . . . 13 (𝜑𝑈𝑋)
8380, 82ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑈) ∈ ℝ)
8481, 83resubcld 11403 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ)
8534, 6resubcld 11403 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ∈ ℝ)
8634recnd 11003 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℂ)
876recnd 11003 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℂ)
8886, 87, 39subne0d 11341 . . . . . . . . . . 11 (𝜑 → (𝑆𝑈) ≠ 0)
8984, 85, 88redivcld 11803 . . . . . . . . . 10 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∈ ℝ)
90 dvferm.b . . . . . . . . . . . 12 (𝜑𝑋 ⊆ ℝ)
91 dvfre 25115 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℝ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
9280, 90, 91syl2anc 584 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
93 dvferm.d . . . . . . . . . . 11 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
9492, 93ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9594renegcld 11402 . . . . . . . . . 10 (𝜑 → -((ℝ D 𝐹)‘𝑈) ∈ ℝ)
9689, 94, 95absdifltd 15145 . . . . . . . . 9 (𝜑 → ((abs‘((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) − ((ℝ D 𝐹)‘𝑈))) < -((ℝ D 𝐹)‘𝑈) ↔ ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))))
9779, 96mpbid 231 . . . . . . . 8 (𝜑 → ((((ℝ D 𝐹)‘𝑈) − -((ℝ D 𝐹)‘𝑈)) < (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) ∧ (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈))))
9897simprd 496 . . . . . . 7 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)))
9994recnd 11003 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹)‘𝑈) ∈ ℂ)
10099negidd 11322 . . . . . . 7 (𝜑 → (((ℝ D 𝐹)‘𝑈) + -((ℝ D 𝐹)‘𝑈)) = 0)
10198, 100breqtrd 5100 . . . . . 6 (𝜑 → (((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0)
10289lt0neg1d 11544 . . . . . 6 (𝜑 → ((((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) < 0 ↔ 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈))))
103101, 102mpbid 231 . . . . 5 (𝜑 → 0 < -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)))
10484recnd 11003 . . . . . 6 (𝜑 → ((𝐹𝑆) − (𝐹𝑈)) ∈ ℂ)
10585recnd 11003 . . . . . 6 (𝜑 → (𝑆𝑈) ∈ ℂ)
106104, 105, 88divneg2d 11765 . . . . 5 (𝜑 → -(((𝐹𝑆) − (𝐹𝑈)) / (𝑆𝑈)) = (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
107103, 106breqtrd 5100 . . . 4 (𝜑 → 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈)))
10885renegcld 11402 . . . . 5 (𝜑 → -(𝑆𝑈) ∈ ℝ)
10934, 6posdifd 11562 . . . . . . 7 (𝜑 → (𝑆 < 𝑈 ↔ 0 < (𝑈𝑆)))
11038, 109mpbid 231 . . . . . 6 (𝜑 → 0 < (𝑈𝑆))
11186, 87negsubdi2d 11348 . . . . . 6 (𝜑 → -(𝑆𝑈) = (𝑈𝑆))
112110, 111breqtrrd 5102 . . . . 5 (𝜑 → 0 < -(𝑆𝑈))
113 gt0div 11841 . . . . 5 ((((𝐹𝑆) − (𝐹𝑈)) ∈ ℝ ∧ -(𝑆𝑈) ∈ ℝ ∧ 0 < -(𝑆𝑈)) → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
11484, 108, 112, 113syl3anc 1370 . . . 4 (𝜑 → (0 < ((𝐹𝑆) − (𝐹𝑈)) ↔ 0 < (((𝐹𝑆) − (𝐹𝑈)) / -(𝑆𝑈))))
115107, 114mpbird 256 . . 3 (𝜑 → 0 < ((𝐹𝑆) − (𝐹𝑈)))
11683, 81posdifd 11562 . . 3 (𝜑 → ((𝐹𝑈) < (𝐹𝑆) ↔ 0 < ((𝐹𝑆) − (𝐹𝑈))))
117115, 116mpbird 256 . 2 (𝜑 → (𝐹𝑈) < (𝐹𝑆))
118 fveq2 6774 . . . . 5 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
119118breq1d 5084 . . . 4 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑈) ↔ (𝐹𝑆) ≤ (𝐹𝑈)))
120 dvferm2.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝑈)(𝐹𝑦) ≤ (𝐹𝑈))
121119, 120, 74rspcdva 3562 . . 3 (𝜑 → (𝐹𝑆) ≤ (𝐹𝑈))
12281, 83, 121lensymd 11126 . 2 (𝜑 → ¬ (𝐹𝑈) < (𝐹𝑆))
123117, 122pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  abscabs 14945   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  dvferm2  25151
  Copyright terms: Public domain W3C validator