Step | Hyp | Ref
| Expression |
1 | | fzfid 13621 |
. . . . . . 7
⊢ (𝜑 → (0...𝑄) ∈ Fin) |
2 | | elfznn0 13278 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0) |
3 | | eirr.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) |
4 | | nn0z 12273 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
5 | | 1exp 13740 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
7 | 6 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ ((1↑𝑛) /
(!‘𝑛)) = (1 /
(!‘𝑛))) |
8 | 7 | mpteq2ia 5173 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
↦ ((1↑𝑛) /
(!‘𝑛))) = (𝑛 ∈ ℕ0
↦ (1 / (!‘𝑛))) |
9 | 3, 8 | eqtr4i 2769 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
10 | 9 | eftval 15714 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = ((1↑𝑘) / (!‘𝑘))) |
11 | 10 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1↑𝑘) / (!‘𝑘))) |
12 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℂ) |
14 | | eftcl 15711 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ) |
15 | 13, 14 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((1↑𝑘) /
(!‘𝑘)) ∈
ℂ) |
16 | 11, 15 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
17 | 2, 16 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (𝐹‘𝑘) ∈ ℂ) |
18 | 1, 17 | fsumcl 15373 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) ∈ ℂ) |
19 | | nn0uz 12549 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤ≥‘(𝑄 + 1)) =
(ℤ≥‘(𝑄 + 1)) |
21 | | eirr.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℕ) |
22 | 21 | peano2nnd 11920 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) ∈ ℕ) |
23 | 22 | nnnn0d 12223 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 + 1) ∈
ℕ0) |
24 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
25 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
26 | 25 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘))) |
27 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ (1 /
(!‘𝑘)) ∈
V |
28 | 26, 3, 27 | fvmpt 6857 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘𝑘) = (1 / (!‘𝑘))) |
29 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (1 / (!‘𝑘))) |
30 | | faccl 13925 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
31 | 30 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℕ) |
32 | 31 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(!‘𝑘) ∈
ℝ+) |
33 | 32 | rpreccld 12711 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (1 /
(!‘𝑘)) ∈
ℝ+) |
34 | 29, 33 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈
ℝ+) |
35 | 9 | efcllem 15715 |
. . . . . . . . . 10
⊢ (1 ∈
ℂ → seq0( + , 𝐹)
∈ dom ⇝ ) |
36 | 13, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
37 | 19, 20, 23, 24, 34, 36 | isumrpcl 15483 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈
ℝ+) |
38 | 37 | rpred 12701 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ) |
39 | 38 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℂ) |
40 | | esum 15718 |
. . . . . . . . 9
⊢ e =
Σ𝑘 ∈
ℕ0 (1 / (!‘𝑘)) |
41 | 28 | sumeq2i 15339 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
ℕ0 (𝐹‘𝑘) = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
42 | 40, 41 | eqtr4i 2769 |
. . . . . . . 8
⊢ e =
Σ𝑘 ∈
ℕ0 (𝐹‘𝑘) |
43 | 19, 20, 23, 24, 16, 36 | isumsplit 15480 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
44 | 42, 43 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
45 | 21 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℂ) |
46 | | pncan 11157 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑄 + 1)
− 1) = 𝑄) |
47 | 45, 12, 46 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑄 + 1) − 1) = 𝑄) |
48 | 47 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄)) |
49 | 48 | sumeq1d 15341 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) |
50 | 49 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
51 | 44, 50 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
52 | 18, 39, 51 | mvrladdd 11318 |
. . . . 5
⊢ (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
53 | 52 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · (e −
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
54 | 21 | nnnn0d 12223 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈
ℕ0) |
55 | 54 | faccld 13926 |
. . . . . 6
⊢ (𝜑 → (!‘𝑄) ∈ ℕ) |
56 | 55 | nncnd 11919 |
. . . . 5
⊢ (𝜑 → (!‘𝑄) ∈ ℂ) |
57 | | ere 15726 |
. . . . . . 7
⊢ e ∈
ℝ |
58 | 57 | recni 10920 |
. . . . . 6
⊢ e ∈
ℂ |
59 | 58 | a1i 11 |
. . . . 5
⊢ (𝜑 → e ∈
ℂ) |
60 | 56, 59, 18 | subdid 11361 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · (e −
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)))) |
61 | 53, 60 | eqtr3d 2780 |
. . 3
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)))) |
62 | | eirr.4 |
. . . . . . 7
⊢ (𝜑 → e = (𝑃 / 𝑄)) |
63 | 62 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄))) |
64 | | eirr.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℤ) |
65 | 64 | zcnd 12356 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℂ) |
66 | 21 | nnne0d 11953 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ≠ 0) |
67 | 56, 65, 45, 66 | div12d 11717 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄))) |
68 | 63, 67 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄))) |
69 | 21 | nnred 11918 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℝ) |
70 | 69 | leidd 11471 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ≤ 𝑄) |
71 | | facdiv 13929 |
. . . . . . . 8
⊢ ((𝑄 ∈ ℕ0
∧ 𝑄 ∈ ℕ
∧ 𝑄 ≤ 𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ) |
72 | 54, 21, 70, 71 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ) |
73 | 72 | nnzd 12354 |
. . . . . 6
⊢ (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ) |
74 | 64, 73 | zmulcld 12361 |
. . . . 5
⊢ (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ) |
75 | 68, 74 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · e) ∈
ℤ) |
76 | 1, 56, 17 | fsummulc2 15424 |
. . . . 5
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹‘𝑘))) |
77 | 2 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0) |
78 | 77, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (𝐹‘𝑘) = (1 / (!‘𝑘))) |
79 | 78 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘)))) |
80 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ) |
81 | 2, 31 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ) |
82 | 81 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ) |
83 | | facne0 13928 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ≠
0) |
84 | 77, 83 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0) |
85 | 80, 82, 84 | divrecd 11684 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘)))) |
86 | 79, 85 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) = ((!‘𝑄) / (!‘𝑘))) |
87 | | permnn 13968 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ) |
88 | 87 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ) |
89 | 86, 88 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) ∈ ℕ) |
90 | 89 | nnzd 12354 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹‘𝑘)) ∈ ℤ) |
91 | 1, 90 | fsumzcl 15375 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹‘𝑘)) ∈ ℤ) |
92 | 76, 91 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘)) ∈ ℤ) |
93 | 75, 92 | zsubcld 12360 |
. . 3
⊢ (𝜑 → (((!‘𝑄) · e) −
((!‘𝑄) ·
Σ𝑘 ∈ (0...𝑄)(𝐹‘𝑘))) ∈ ℤ) |
94 | 61, 93 | eqeltrd 2839 |
. 2
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
95 | | 0zd 12261 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
96 | 55 | nnrpd 12699 |
. . . . 5
⊢ (𝜑 → (!‘𝑄) ∈
ℝ+) |
97 | 96, 37 | rpmulcld 12717 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈
ℝ+) |
98 | 97 | rpgt0d 12704 |
. . 3
⊢ (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
99 | 22 | peano2nnd 11920 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ) |
100 | 99 | nnred 11918 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ) |
101 | 23 | faccld 13926 |
. . . . . . . 8
⊢ (𝜑 → (!‘(𝑄 + 1)) ∈
ℕ) |
102 | 101, 22 | nnmulcld 11956 |
. . . . . . 7
⊢ (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈
ℕ) |
103 | 100, 102 | nndivred 11957 |
. . . . . 6
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ) |
104 | 55 | nnrecred 11954 |
. . . . . 6
⊢ (𝜑 → (1 / (!‘𝑄)) ∈
ℝ) |
105 | | abs1 14937 |
. . . . . . . . . . . 12
⊢
(abs‘1) = 1 |
106 | 105 | oveq1i 7265 |
. . . . . . . . . . 11
⊢
((abs‘1)↑𝑛) = (1↑𝑛) |
107 | 106 | oveq1i 7265 |
. . . . . . . . . 10
⊢
(((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛)) |
108 | 107 | mpteq2i 5175 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
109 | 9, 108 | eqtr4i 2769 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
(((abs‘1)↑𝑛) /
(!‘𝑛))) |
110 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦
((((abs‘1)↑(𝑄 +
1)) / (!‘(𝑄 + 1)))
· ((1 / ((𝑄 + 1) +
1))↑𝑛))) |
111 | | 1le1 11533 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
112 | 105, 111 | eqbrtri 5091 |
. . . . . . . . 9
⊢
(abs‘1) ≤ 1 |
113 | 112 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (abs‘1) ≤
1) |
114 | 9, 109, 110, 22, 13, 113 | eftlub 15746 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))) |
115 | 37 | rprege0d 12708 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘))) |
116 | | absid 14936 |
. . . . . . . 8
⊢
((Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
117 | 115, 116 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) |
118 | 105 | oveq1i 7265 |
. . . . . . . . . 10
⊢
((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1)) |
119 | 22 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 + 1) ∈ ℤ) |
120 | | 1exp 13740 |
. . . . . . . . . . 11
⊢ ((𝑄 + 1) ∈ ℤ →
(1↑(𝑄 + 1)) =
1) |
121 | 119, 120 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1↑(𝑄 + 1)) = 1) |
122 | 118, 121 | eqtrid 2790 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1) |
123 | 122 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝜑 →
(((abs‘1)↑(𝑄 +
1)) · (((𝑄 + 1) + 1)
/ ((!‘(𝑄 + 1))
· (𝑄 + 1)))) = (1
· (((𝑄 + 1) + 1) /
((!‘(𝑄 + 1)) ·
(𝑄 +
1))))) |
124 | 103 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ) |
125 | 124 | mulid2d 10924 |
. . . . . . . 8
⊢ (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) |
126 | 123, 125 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 →
(((abs‘1)↑(𝑄 +
1)) · (((𝑄 + 1) + 1)
/ ((!‘(𝑄 + 1))
· (𝑄 + 1)))) =
(((𝑄 + 1) + 1) /
((!‘(𝑄 + 1)) ·
(𝑄 + 1)))) |
127 | 114, 117,
126 | 3brtr3d 5101 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) |
128 | 22 | nnred 11918 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) ∈ ℝ) |
129 | 128, 128 | readdcld 10935 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ) |
130 | 128, 128 | remulcld 10936 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ) |
131 | | 1red 10907 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
132 | 21 | nnge1d 11951 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ≤ 𝑄) |
133 | | 1nn 11914 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ |
134 | | nnleltp1 12305 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℕ ∧ 𝑄
∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1))) |
135 | 133, 21, 134 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1))) |
136 | 132, 135 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 1 < (𝑄 + 1)) |
137 | 131, 128,
128, 136 | ltadd2dd 11064 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1))) |
138 | 22 | nncnd 11919 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 + 1) ∈ ℂ) |
139 | 138 | 2timesd 12146 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1))) |
140 | | df-2 11966 |
. . . . . . . . . . . 12
⊢ 2 = (1 +
1) |
141 | 131, 69, 131, 132 | leadd1dd 11519 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 + 1) ≤ (𝑄 + 1)) |
142 | 140, 141 | eqbrtrid 5105 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ (𝑄 + 1)) |
143 | | 2re 11977 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
144 | 143 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℝ) |
145 | 22 | nngt0d 11952 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < (𝑄 + 1)) |
146 | | lemul1 11757 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ (𝑄 +
1) ∈ ℝ ∧ ((𝑄
+ 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))) |
147 | 144, 128,
128, 145, 146 | syl112anc 1372 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))) |
148 | 142, 147 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))) |
149 | 139, 148 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))) |
150 | 100, 129,
130, 137, 149 | ltletrd 11065 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1))) |
151 | | facp1 13920 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ ℕ0
→ (!‘(𝑄 + 1)) =
((!‘𝑄) ·
(𝑄 + 1))) |
152 | 54, 151 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1))) |
153 | 152 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄))) |
154 | 101 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘(𝑄 + 1)) ∈
ℂ) |
155 | 55 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘𝑄) ≠ 0) |
156 | 154, 56, 155 | divrecd 11684 |
. . . . . . . . . . 11
⊢ (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 /
(!‘𝑄)))) |
157 | 138, 56, 155 | divcan3d 11686 |
. . . . . . . . . . 11
⊢ (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1)) |
158 | 153, 156,
157 | 3eqtr3rd 2787 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄)))) |
159 | 158 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1))) |
160 | 104 | recnd 10934 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / (!‘𝑄)) ∈
ℂ) |
161 | 154, 160,
138 | mul32d 11115 |
. . . . . . . . 9
⊢ (𝜑 → (((!‘(𝑄 + 1)) · (1 /
(!‘𝑄))) ·
(𝑄 + 1)) =
(((!‘(𝑄 + 1))
· (𝑄 + 1)) ·
(1 / (!‘𝑄)))) |
162 | 159, 161 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))) |
163 | 150, 162 | breqtrd 5096 |
. . . . . . 7
⊢ (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄)))) |
164 | 102 | nnred 11918 |
. . . . . . . 8
⊢ (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈
ℝ) |
165 | 102 | nngt0d 11952 |
. . . . . . . 8
⊢ (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1))) |
166 | | ltdivmul 11780 |
. . . . . . . 8
⊢ ((((𝑄 + 1) + 1) ∈ ℝ ∧
(1 / (!‘𝑄)) ∈
ℝ ∧ (((!‘(𝑄
+ 1)) · (𝑄 + 1))
∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄))))) |
167 | 100, 104,
164, 165, 166 | syl112anc 1372 |
. . . . . . 7
⊢ (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 /
(!‘𝑄))))) |
168 | 163, 167 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄))) |
169 | 38, 103, 104, 127, 168 | lelttrd 11063 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) < (1 / (!‘𝑄))) |
170 | 38, 131, 96 | ltmuldiv2d 12749 |
. . . . 5
⊢ (𝜑 → (((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘) < (1 / (!‘𝑄)))) |
171 | 169, 170 | mpbird 256 |
. . . 4
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < 1) |
172 | | 0p1e1 12025 |
. . . 4
⊢ (0 + 1) =
1 |
173 | 171, 172 | breqtrrdi 5112 |
. . 3
⊢ (𝜑 → ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < (0 + 1)) |
174 | | btwnnz 12326 |
. . 3
⊢ ((0
∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
175 | 95, 98, 173, 174 | syl3anc 1369 |
. 2
⊢ (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈
(ℤ≥‘(𝑄 + 1))(𝐹‘𝑘)) ∈ ℤ) |
176 | 94, 175 | pm2.65i 193 |
1
⊢ ¬
𝜑 |