MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Visualization version   GIF version

Theorem eirrlem 16179
Description: Lemma for eirr 16180. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
eirr.4 (𝜑 → e = (𝑃 / 𝑄))
Assertion
Ref Expression
eirrlem ¬ 𝜑
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirrlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13945 . . . . . . 7 (𝜑 → (0...𝑄) ∈ Fin)
2 elfznn0 13588 . . . . . . . 8 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
3 eirr.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
4 nn0z 12561 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5 1exp 14063 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
76oveq1d 7405 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
87mpteq2ia 5205 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
93, 8eqtr4i 2756 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
109eftval 16049 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
1110adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
12 ax-1cn 11133 . . . . . . . . . . 11 1 ∈ ℂ
1312a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
14 eftcl 16046 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14sylan 580 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1611, 15eqeltrd 2829 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
172, 16sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
181, 17fsumcl 15706 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
19 nn0uz 12842 . . . . . . . . 9 0 = (ℤ‘0)
20 eqid 2730 . . . . . . . . 9 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
21 eirr.3 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
2221peano2nnd 12210 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℕ)
2322nnnn0d 12510 . . . . . . . . 9 (𝜑 → (𝑄 + 1) ∈ ℕ0)
24 eqidd 2731 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
25 fveq2 6861 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
2625oveq2d 7406 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
27 ovex 7423 . . . . . . . . . . . 12 (1 / (!‘𝑘)) ∈ V
2826, 3, 27fvmpt 6971 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
2928adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
30 faccl 14255 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
3231nnrpd 13000 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
3332rpreccld 13012 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
3429, 33eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
359efcllem 16050 . . . . . . . . . 10 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3613, 35syl 17 . . . . . . . . 9 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3719, 20, 23, 24, 34, 36isumrpcl 15816 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
3837rpred 13002 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
3938recnd 11209 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
40 esum 16053 . . . . . . . . 9 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4128sumeq2i 15671 . . . . . . . . 9 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4240, 41eqtr4i 2756 . . . . . . . 8 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
4319, 20, 23, 24, 16, 36isumsplit 15813 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4442, 43eqtrid 2777 . . . . . . 7 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4521nncnd 12209 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
46 pncan 11434 . . . . . . . . . . 11 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
4745, 12, 46sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
4847oveq2d 7406 . . . . . . . . 9 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
4948sumeq1d 15673 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
5049oveq1d 7405 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5144, 50eqtrd 2765 . . . . . 6 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5218, 39, 51mvrladdd 11598 . . . . 5 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5352oveq2d 7406 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5421nnnn0d 12510 . . . . . . 7 (𝜑𝑄 ∈ ℕ0)
5554faccld 14256 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℕ)
5655nncnd 12209 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℂ)
57 ere 16062 . . . . . . 7 e ∈ ℝ
5857recni 11195 . . . . . 6 e ∈ ℂ
5958a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
6056, 59, 18subdid 11641 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6153, 60eqtr3d 2767 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
62 eirr.4 . . . . . . 7 (𝜑 → e = (𝑃 / 𝑄))
6362oveq2d 7406 . . . . . 6 (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄)))
64 eirr.2 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
6564zcnd 12646 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
6621nnne0d 12243 . . . . . . 7 (𝜑𝑄 ≠ 0)
6756, 65, 45, 66div12d 12001 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
6863, 67eqtrd 2765 . . . . 5 (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄)))
6921nnred 12208 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
7069leidd 11751 . . . . . . . 8 (𝜑𝑄𝑄)
71 facdiv 14259 . . . . . . . 8 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7254, 21, 70, 71syl3anc 1373 . . . . . . 7 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7372nnzd 12563 . . . . . 6 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
7464, 73zmulcld 12651 . . . . 5 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
7568, 74eqeltrd 2829 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℤ)
761, 56, 17fsummulc2 15757 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
772adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
7877, 28syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
7978oveq2d 7406 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8056adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
812, 31sylan2 593 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8281nncnd 12209 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
83 facne0 14258 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ≠ 0)
8477, 83syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0)
8580, 82, 84divrecd 11968 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8679, 85eqtr4d 2768 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
87 permnn 14298 . . . . . . . . 9 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8887adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8986, 88eqeltrd 2829 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9089nnzd 12563 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
911, 90fsumzcl 15708 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9276, 91eqeltrd 2829 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9375, 92zsubcld 12650 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9461, 93eqeltrd 2829 . 2 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
95 0zd 12548 . . 3 (𝜑 → 0 ∈ ℤ)
9655nnrpd 13000 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℝ+)
9796, 37rpmulcld 13018 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
9897rpgt0d 13005 . . 3 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
9922peano2nnd 12210 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
10099nnred 12208 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10123faccld 14256 . . . . . . . 8 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
102101, 22nnmulcld 12246 . . . . . . 7 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
103100, 102nndivred 12247 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10455nnrecred 12244 . . . . . 6 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
105 abs1 15270 . . . . . . . . . . . 12 (abs‘1) = 1
106105oveq1i 7400 . . . . . . . . . . 11 ((abs‘1)↑𝑛) = (1↑𝑛)
107106oveq1i 7400 . . . . . . . . . 10 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
108107mpteq2i 5206 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
1099, 108eqtr4i 2756 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
110 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
111 1le1 11813 . . . . . . . . . 10 1 ≤ 1
112105, 111eqbrtri 5131 . . . . . . . . 9 (abs‘1) ≤ 1
113112a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) ≤ 1)
1149, 109, 110, 22, 13, 113eftlub 16084 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11537rprege0d 13009 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
116 absid 15269 . . . . . . . 8 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
117115, 116syl 17 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118105oveq1i 7400 . . . . . . . . . 10 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
11922nnzd 12563 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℤ)
120 1exp 14063 . . . . . . . . . . 11 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
121119, 120syl 17 . . . . . . . . . 10 (𝜑 → (1↑(𝑄 + 1)) = 1)
122118, 121eqtrid 2777 . . . . . . . . 9 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
123122oveq1d 7405 . . . . . . . 8 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
124103recnd 11209 . . . . . . . . 9 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
125124mullidd 11199 . . . . . . . 8 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
126123, 125eqtrd 2765 . . . . . . 7 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127114, 117, 1263brtr3d 5141 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12822nnred 12208 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℝ)
129128, 128readdcld 11210 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
130128, 128remulcld 11211 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
131 1red 11182 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
13221nnge1d 12241 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑄)
133 1nn 12204 . . . . . . . . . . . 12 1 ∈ ℕ
134 nnleltp1 12596 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
135133, 21, 134sylancr 587 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136132, 135mpbid 232 . . . . . . . . . 10 (𝜑 → 1 < (𝑄 + 1))
137131, 128, 128, 136ltadd2dd 11340 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13822nncnd 12209 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℂ)
1391382timesd 12432 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
140 df-2 12256 . . . . . . . . . . . 12 2 = (1 + 1)
141131, 69, 131, 132leadd1dd 11799 . . . . . . . . . . . 12 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
142140, 141eqbrtrid 5145 . . . . . . . . . . 11 (𝜑 → 2 ≤ (𝑄 + 1))
143 2re 12267 . . . . . . . . . . . . 13 2 ∈ ℝ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
14522nngt0d 12242 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑄 + 1))
146 lemul1 12041 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
147144, 128, 128, 145, 146syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148142, 147mpbid 232 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
149139, 148eqbrtrrd 5134 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150100, 129, 130, 137, 149ltletrd 11341 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
151 facp1 14250 . . . . . . . . . . . . 13 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15254, 151syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
153152oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
154101nncnd 12209 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15555nnne0d 12243 . . . . . . . . . . . 12 (𝜑 → (!‘𝑄) ≠ 0)
156154, 56, 155divrecd 11968 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
157138, 56, 155divcan3d 11970 . . . . . . . . . . 11 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
158153, 156, 1573eqtr3rd 2774 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
159158oveq1d 7405 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
160104recnd 11209 . . . . . . . . . 10 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
161154, 160, 138mul32d 11391 . . . . . . . . 9 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
162159, 161eqtrd 2765 . . . . . . . 8 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163150, 162breqtrd 5136 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164102nnred 12208 . . . . . . . 8 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
165102nngt0d 12242 . . . . . . . 8 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
166 ltdivmul 12065 . . . . . . . 8 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
167100, 104, 164, 165, 166syl112anc 1376 . . . . . . 7 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168163, 167mpbird 257 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
16938, 103, 104, 127, 168lelttrd 11339 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17038, 131, 96ltmuldiv2d 13050 . . . . 5 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
171169, 170mpbird 257 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
172 0p1e1 12310 . . . 4 (0 + 1) = 1
173171, 172breqtrrdi 5152 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
174 btwnnz 12617 . . 3 ((0 ∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17595, 98, 173, 174syl3anc 1373 . 2 (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17694, 175pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  seqcseq 13973  cexp 14033  !cfa 14245  abscabs 15207  cli 15457  Σcsu 15659  eceu 16035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-e 16041
This theorem is referenced by:  eirr  16180
  Copyright terms: Public domain W3C validator