MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Visualization version   GIF version

Theorem eirrlem 15559
Description: Lemma for eirr 15560. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
eirr.4 (𝜑 → e = (𝑃 / 𝑄))
Assertion
Ref Expression
eirrlem ¬ 𝜑
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirrlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13344 . . . . . . 7 (𝜑 → (0...𝑄) ∈ Fin)
2 elfznn0 13003 . . . . . . . 8 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
3 eirr.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
4 nn0z 12008 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5 1exp 13461 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
76oveq1d 7173 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
87mpteq2ia 5159 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
93, 8eqtr4i 2849 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
109eftval 15432 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
1110adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
12 ax-1cn 10597 . . . . . . . . . . 11 1 ∈ ℂ
1312a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
14 eftcl 15429 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14sylan 582 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1611, 15eqeltrd 2915 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
172, 16sylan2 594 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
181, 17fsumcl 15092 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
19 nn0uz 12283 . . . . . . . . 9 0 = (ℤ‘0)
20 eqid 2823 . . . . . . . . 9 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
21 eirr.3 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
2221peano2nnd 11657 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℕ)
2322nnnn0d 11958 . . . . . . . . 9 (𝜑 → (𝑄 + 1) ∈ ℕ0)
24 eqidd 2824 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
25 fveq2 6672 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
2625oveq2d 7174 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
27 ovex 7191 . . . . . . . . . . . 12 (1 / (!‘𝑘)) ∈ V
2826, 3, 27fvmpt 6770 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
2928adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
30 faccl 13646 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantl 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
3231nnrpd 12432 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
3332rpreccld 12444 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
3429, 33eqeltrd 2915 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
359efcllem 15433 . . . . . . . . . 10 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3613, 35syl 17 . . . . . . . . 9 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3719, 20, 23, 24, 34, 36isumrpcl 15200 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
3837rpred 12434 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
3938recnd 10671 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
40 esum 15436 . . . . . . . . 9 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4128sumeq2i 15058 . . . . . . . . 9 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4240, 41eqtr4i 2849 . . . . . . . 8 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
4319, 20, 23, 24, 16, 36isumsplit 15197 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4442, 43syl5eq 2870 . . . . . . 7 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4521nncnd 11656 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
46 pncan 10894 . . . . . . . . . . 11 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
4745, 12, 46sylancl 588 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
4847oveq2d 7174 . . . . . . . . 9 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
4948sumeq1d 15060 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
5049oveq1d 7173 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5144, 50eqtrd 2858 . . . . . 6 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5218, 39, 51mvrladdd 11055 . . . . 5 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5352oveq2d 7174 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5421nnnn0d 11958 . . . . . . 7 (𝜑𝑄 ∈ ℕ0)
5554faccld 13647 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℕ)
5655nncnd 11656 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℂ)
57 ere 15444 . . . . . . 7 e ∈ ℝ
5857recni 10657 . . . . . 6 e ∈ ℂ
5958a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
6056, 59, 18subdid 11098 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6153, 60eqtr3d 2860 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
62 eirr.4 . . . . . . 7 (𝜑 → e = (𝑃 / 𝑄))
6362oveq2d 7174 . . . . . 6 (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄)))
64 eirr.2 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
6564zcnd 12091 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
6621nnne0d 11690 . . . . . . 7 (𝜑𝑄 ≠ 0)
6756, 65, 45, 66div12d 11454 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
6863, 67eqtrd 2858 . . . . 5 (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄)))
6921nnred 11655 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
7069leidd 11208 . . . . . . . 8 (𝜑𝑄𝑄)
71 facdiv 13650 . . . . . . . 8 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7254, 21, 70, 71syl3anc 1367 . . . . . . 7 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7372nnzd 12089 . . . . . 6 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
7464, 73zmulcld 12096 . . . . 5 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
7568, 74eqeltrd 2915 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℤ)
761, 56, 17fsummulc2 15141 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
772adantl 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
7877, 28syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
7978oveq2d 7174 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8056adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
812, 31sylan2 594 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8281nncnd 11656 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
83 facne0 13649 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ≠ 0)
8477, 83syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0)
8580, 82, 84divrecd 11421 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8679, 85eqtr4d 2861 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
87 permnn 13689 . . . . . . . . 9 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8887adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8986, 88eqeltrd 2915 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9089nnzd 12089 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
911, 90fsumzcl 15094 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9276, 91eqeltrd 2915 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9375, 92zsubcld 12095 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9461, 93eqeltrd 2915 . 2 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
95 0zd 11996 . . 3 (𝜑 → 0 ∈ ℤ)
9655nnrpd 12432 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℝ+)
9796, 37rpmulcld 12450 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
9897rpgt0d 12437 . . 3 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
9922peano2nnd 11657 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
10099nnred 11655 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10123faccld 13647 . . . . . . . 8 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
102101, 22nnmulcld 11693 . . . . . . 7 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
103100, 102nndivred 11694 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10455nnrecred 11691 . . . . . 6 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
105 abs1 14659 . . . . . . . . . . . 12 (abs‘1) = 1
106105oveq1i 7168 . . . . . . . . . . 11 ((abs‘1)↑𝑛) = (1↑𝑛)
107106oveq1i 7168 . . . . . . . . . 10 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
108107mpteq2i 5160 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
1099, 108eqtr4i 2849 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
110 eqid 2823 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
111 1le1 11270 . . . . . . . . . 10 1 ≤ 1
112105, 111eqbrtri 5089 . . . . . . . . 9 (abs‘1) ≤ 1
113112a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) ≤ 1)
1149, 109, 110, 22, 13, 113eftlub 15464 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11537rprege0d 12441 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
116 absid 14658 . . . . . . . 8 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
117115, 116syl 17 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118105oveq1i 7168 . . . . . . . . . 10 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
11922nnzd 12089 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℤ)
120 1exp 13461 . . . . . . . . . . 11 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
121119, 120syl 17 . . . . . . . . . 10 (𝜑 → (1↑(𝑄 + 1)) = 1)
122118, 121syl5eq 2870 . . . . . . . . 9 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
123122oveq1d 7173 . . . . . . . 8 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
124103recnd 10671 . . . . . . . . 9 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
125124mulid2d 10661 . . . . . . . 8 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
126123, 125eqtrd 2858 . . . . . . 7 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127114, 117, 1263brtr3d 5099 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12822nnred 11655 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℝ)
129128, 128readdcld 10672 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
130128, 128remulcld 10673 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
131 1red 10644 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
13221nnge1d 11688 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑄)
133 1nn 11651 . . . . . . . . . . . 12 1 ∈ ℕ
134 nnleltp1 12040 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
135133, 21, 134sylancr 589 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136132, 135mpbid 234 . . . . . . . . . 10 (𝜑 → 1 < (𝑄 + 1))
137131, 128, 128, 136ltadd2dd 10801 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13822nncnd 11656 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℂ)
1391382timesd 11883 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
140 df-2 11703 . . . . . . . . . . . 12 2 = (1 + 1)
141131, 69, 131, 132leadd1dd 11256 . . . . . . . . . . . 12 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
142140, 141eqbrtrid 5103 . . . . . . . . . . 11 (𝜑 → 2 ≤ (𝑄 + 1))
143 2re 11714 . . . . . . . . . . . . 13 2 ∈ ℝ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
14522nngt0d 11689 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑄 + 1))
146 lemul1 11494 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
147144, 128, 128, 145, 146syl112anc 1370 . . . . . . . . . . 11 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148142, 147mpbid 234 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
149139, 148eqbrtrrd 5092 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150100, 129, 130, 137, 149ltletrd 10802 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
151 facp1 13641 . . . . . . . . . . . . 13 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15254, 151syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
153152oveq1d 7173 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
154101nncnd 11656 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15555nnne0d 11690 . . . . . . . . . . . 12 (𝜑 → (!‘𝑄) ≠ 0)
156154, 56, 155divrecd 11421 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
157138, 56, 155divcan3d 11423 . . . . . . . . . . 11 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
158153, 156, 1573eqtr3rd 2867 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
159158oveq1d 7173 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
160104recnd 10671 . . . . . . . . . 10 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
161154, 160, 138mul32d 10852 . . . . . . . . 9 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
162159, 161eqtrd 2858 . . . . . . . 8 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163150, 162breqtrd 5094 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164102nnred 11655 . . . . . . . 8 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
165102nngt0d 11689 . . . . . . . 8 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
166 ltdivmul 11517 . . . . . . . 8 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
167100, 104, 164, 165, 166syl112anc 1370 . . . . . . 7 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168163, 167mpbird 259 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
16938, 103, 104, 127, 168lelttrd 10800 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17038, 131, 96ltmuldiv2d 12482 . . . . 5 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
171169, 170mpbird 259 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
172 0p1e1 11762 . . . 4 (0 + 1) = 1
173171, 172breqtrrdi 5110 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
174 btwnnz 12061 . . 3 ((0 ∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17595, 98, 173, 174syl3anc 1367 . 2 (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17694, 175pm2.65i 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  seqcseq 13372  cexp 13432  !cfa 13636  abscabs 14595  cli 14843  Σcsu 15044  eceu 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-e 15424
This theorem is referenced by:  eirr  15560
  Copyright terms: Public domain W3C validator