MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Visualization version   GIF version

Theorem eirrlem 15841
Description: Lemma for eirr 15842. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
eirr.4 (𝜑 → e = (𝑃 / 𝑄))
Assertion
Ref Expression
eirrlem ¬ 𝜑
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirrlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13621 . . . . . . 7 (𝜑 → (0...𝑄) ∈ Fin)
2 elfznn0 13278 . . . . . . . 8 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
3 eirr.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
4 nn0z 12273 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5 1exp 13740 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
76oveq1d 7270 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
87mpteq2ia 5173 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
93, 8eqtr4i 2769 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
109eftval 15714 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
1110adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
12 ax-1cn 10860 . . . . . . . . . . 11 1 ∈ ℂ
1312a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
14 eftcl 15711 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14sylan 579 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1611, 15eqeltrd 2839 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
172, 16sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
181, 17fsumcl 15373 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
19 nn0uz 12549 . . . . . . . . 9 0 = (ℤ‘0)
20 eqid 2738 . . . . . . . . 9 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
21 eirr.3 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
2221peano2nnd 11920 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℕ)
2322nnnn0d 12223 . . . . . . . . 9 (𝜑 → (𝑄 + 1) ∈ ℕ0)
24 eqidd 2739 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
25 fveq2 6756 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
2625oveq2d 7271 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
27 ovex 7288 . . . . . . . . . . . 12 (1 / (!‘𝑘)) ∈ V
2826, 3, 27fvmpt 6857 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
2928adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
30 faccl 13925 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
3231nnrpd 12699 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
3332rpreccld 12711 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
3429, 33eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
359efcllem 15715 . . . . . . . . . 10 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3613, 35syl 17 . . . . . . . . 9 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3719, 20, 23, 24, 34, 36isumrpcl 15483 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
3837rpred 12701 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
3938recnd 10934 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
40 esum 15718 . . . . . . . . 9 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4128sumeq2i 15339 . . . . . . . . 9 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4240, 41eqtr4i 2769 . . . . . . . 8 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
4319, 20, 23, 24, 16, 36isumsplit 15480 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4442, 43eqtrid 2790 . . . . . . 7 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4521nncnd 11919 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
46 pncan 11157 . . . . . . . . . . 11 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
4745, 12, 46sylancl 585 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
4847oveq2d 7271 . . . . . . . . 9 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
4948sumeq1d 15341 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
5049oveq1d 7270 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5144, 50eqtrd 2778 . . . . . 6 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5218, 39, 51mvrladdd 11318 . . . . 5 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5352oveq2d 7271 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5421nnnn0d 12223 . . . . . . 7 (𝜑𝑄 ∈ ℕ0)
5554faccld 13926 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℕ)
5655nncnd 11919 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℂ)
57 ere 15726 . . . . . . 7 e ∈ ℝ
5857recni 10920 . . . . . 6 e ∈ ℂ
5958a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
6056, 59, 18subdid 11361 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6153, 60eqtr3d 2780 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
62 eirr.4 . . . . . . 7 (𝜑 → e = (𝑃 / 𝑄))
6362oveq2d 7271 . . . . . 6 (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄)))
64 eirr.2 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
6564zcnd 12356 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
6621nnne0d 11953 . . . . . . 7 (𝜑𝑄 ≠ 0)
6756, 65, 45, 66div12d 11717 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
6863, 67eqtrd 2778 . . . . 5 (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄)))
6921nnred 11918 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
7069leidd 11471 . . . . . . . 8 (𝜑𝑄𝑄)
71 facdiv 13929 . . . . . . . 8 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7254, 21, 70, 71syl3anc 1369 . . . . . . 7 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7372nnzd 12354 . . . . . 6 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
7464, 73zmulcld 12361 . . . . 5 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
7568, 74eqeltrd 2839 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℤ)
761, 56, 17fsummulc2 15424 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
772adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
7877, 28syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
7978oveq2d 7271 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8056adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
812, 31sylan2 592 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8281nncnd 11919 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
83 facne0 13928 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ≠ 0)
8477, 83syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0)
8580, 82, 84divrecd 11684 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8679, 85eqtr4d 2781 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
87 permnn 13968 . . . . . . . . 9 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8887adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8986, 88eqeltrd 2839 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9089nnzd 12354 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
911, 90fsumzcl 15375 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9276, 91eqeltrd 2839 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9375, 92zsubcld 12360 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9461, 93eqeltrd 2839 . 2 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
95 0zd 12261 . . 3 (𝜑 → 0 ∈ ℤ)
9655nnrpd 12699 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℝ+)
9796, 37rpmulcld 12717 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
9897rpgt0d 12704 . . 3 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
9922peano2nnd 11920 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
10099nnred 11918 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10123faccld 13926 . . . . . . . 8 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
102101, 22nnmulcld 11956 . . . . . . 7 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
103100, 102nndivred 11957 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10455nnrecred 11954 . . . . . 6 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
105 abs1 14937 . . . . . . . . . . . 12 (abs‘1) = 1
106105oveq1i 7265 . . . . . . . . . . 11 ((abs‘1)↑𝑛) = (1↑𝑛)
107106oveq1i 7265 . . . . . . . . . 10 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
108107mpteq2i 5175 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
1099, 108eqtr4i 2769 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
110 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
111 1le1 11533 . . . . . . . . . 10 1 ≤ 1
112105, 111eqbrtri 5091 . . . . . . . . 9 (abs‘1) ≤ 1
113112a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) ≤ 1)
1149, 109, 110, 22, 13, 113eftlub 15746 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11537rprege0d 12708 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
116 absid 14936 . . . . . . . 8 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
117115, 116syl 17 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118105oveq1i 7265 . . . . . . . . . 10 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
11922nnzd 12354 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℤ)
120 1exp 13740 . . . . . . . . . . 11 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
121119, 120syl 17 . . . . . . . . . 10 (𝜑 → (1↑(𝑄 + 1)) = 1)
122118, 121eqtrid 2790 . . . . . . . . 9 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
123122oveq1d 7270 . . . . . . . 8 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
124103recnd 10934 . . . . . . . . 9 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
125124mulid2d 10924 . . . . . . . 8 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
126123, 125eqtrd 2778 . . . . . . 7 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127114, 117, 1263brtr3d 5101 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12822nnred 11918 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℝ)
129128, 128readdcld 10935 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
130128, 128remulcld 10936 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
131 1red 10907 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
13221nnge1d 11951 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑄)
133 1nn 11914 . . . . . . . . . . . 12 1 ∈ ℕ
134 nnleltp1 12305 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
135133, 21, 134sylancr 586 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136132, 135mpbid 231 . . . . . . . . . 10 (𝜑 → 1 < (𝑄 + 1))
137131, 128, 128, 136ltadd2dd 11064 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13822nncnd 11919 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℂ)
1391382timesd 12146 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
140 df-2 11966 . . . . . . . . . . . 12 2 = (1 + 1)
141131, 69, 131, 132leadd1dd 11519 . . . . . . . . . . . 12 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
142140, 141eqbrtrid 5105 . . . . . . . . . . 11 (𝜑 → 2 ≤ (𝑄 + 1))
143 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
14522nngt0d 11952 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑄 + 1))
146 lemul1 11757 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
147144, 128, 128, 145, 146syl112anc 1372 . . . . . . . . . . 11 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148142, 147mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
149139, 148eqbrtrrd 5094 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150100, 129, 130, 137, 149ltletrd 11065 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
151 facp1 13920 . . . . . . . . . . . . 13 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15254, 151syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
153152oveq1d 7270 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
154101nncnd 11919 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15555nnne0d 11953 . . . . . . . . . . . 12 (𝜑 → (!‘𝑄) ≠ 0)
156154, 56, 155divrecd 11684 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
157138, 56, 155divcan3d 11686 . . . . . . . . . . 11 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
158153, 156, 1573eqtr3rd 2787 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
159158oveq1d 7270 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
160104recnd 10934 . . . . . . . . . 10 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
161154, 160, 138mul32d 11115 . . . . . . . . 9 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
162159, 161eqtrd 2778 . . . . . . . 8 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163150, 162breqtrd 5096 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164102nnred 11918 . . . . . . . 8 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
165102nngt0d 11952 . . . . . . . 8 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
166 ltdivmul 11780 . . . . . . . 8 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
167100, 104, 164, 165, 166syl112anc 1372 . . . . . . 7 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168163, 167mpbird 256 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
16938, 103, 104, 127, 168lelttrd 11063 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17038, 131, 96ltmuldiv2d 12749 . . . . 5 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
171169, 170mpbird 256 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
172 0p1e1 12025 . . . 4 (0 + 1) = 1
173171, 172breqtrrdi 5112 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
174 btwnnz 12326 . . 3 ((0 ∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17595, 98, 173, 174syl3anc 1369 . 2 (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17694, 175pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  seqcseq 13649  cexp 13710  !cfa 13915  abscabs 14873  cli 15121  Σcsu 15325  eceu 15700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706
This theorem is referenced by:  eirr  15842
  Copyright terms: Public domain W3C validator