MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eirrlem Structured version   Visualization version   GIF version

Theorem eirrlem 15548
Description: Lemma for eirr 15549. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
eirr.4 (𝜑 → e = (𝑃 / 𝑄))
Assertion
Ref Expression
eirrlem ¬ 𝜑
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirrlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13336 . . . . . . 7 (𝜑 → (0...𝑄) ∈ Fin)
2 elfznn0 12995 . . . . . . . 8 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
3 eirr.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
4 nn0z 11993 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5 1exp 13454 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
64, 5syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
76oveq1d 7155 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
87mpteq2ia 5133 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
93, 8eqtr4i 2848 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
109eftval 15421 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
1110adantl 485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
12 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
1312a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
14 eftcl 15418 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1513, 14sylan 583 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1611, 15eqeltrd 2914 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
172, 16sylan2 595 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
181, 17fsumcl 15081 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
19 nn0uz 12268 . . . . . . . . 9 0 = (ℤ‘0)
20 eqid 2822 . . . . . . . . 9 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
21 eirr.3 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
2221peano2nnd 11642 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℕ)
2322nnnn0d 11943 . . . . . . . . 9 (𝜑 → (𝑄 + 1) ∈ ℕ0)
24 eqidd 2823 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
25 fveq2 6652 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
2625oveq2d 7156 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
27 ovex 7173 . . . . . . . . . . . 12 (1 / (!‘𝑘)) ∈ V
2826, 3, 27fvmpt 6750 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
2928adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
30 faccl 13639 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantl 485 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
3231nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
3332rpreccld 12429 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
3429, 33eqeltrd 2914 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
359efcllem 15422 . . . . . . . . . 10 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3613, 35syl 17 . . . . . . . . 9 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3719, 20, 23, 24, 34, 36isumrpcl 15189 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
3837rpred 12419 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
3938recnd 10658 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
40 esum 15425 . . . . . . . . 9 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4128sumeq2i 15047 . . . . . . . . 9 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
4240, 41eqtr4i 2848 . . . . . . . 8 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
4319, 20, 23, 24, 16, 36isumsplit 15186 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4442, 43syl5eq 2869 . . . . . . 7 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4521nncnd 11641 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℂ)
46 pncan 10881 . . . . . . . . . . 11 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
4745, 12, 46sylancl 589 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
4847oveq2d 7156 . . . . . . . . 9 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
4948sumeq1d 15049 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
5049oveq1d 7155 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5144, 50eqtrd 2857 . . . . . 6 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5218, 39, 51mvrladdd 11042 . . . . 5 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5352oveq2d 7156 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
5421nnnn0d 11943 . . . . . . 7 (𝜑𝑄 ∈ ℕ0)
5554faccld 13640 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℕ)
5655nncnd 11641 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℂ)
57 ere 15433 . . . . . . 7 e ∈ ℝ
5857recni 10644 . . . . . 6 e ∈ ℂ
5958a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
6056, 59, 18subdid 11085 . . . 4 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6153, 60eqtr3d 2859 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
62 eirr.4 . . . . . . 7 (𝜑 → e = (𝑃 / 𝑄))
6362oveq2d 7156 . . . . . 6 (𝜑 → ((!‘𝑄) · e) = ((!‘𝑄) · (𝑃 / 𝑄)))
64 eirr.2 . . . . . . . 8 (𝜑𝑃 ∈ ℤ)
6564zcnd 12076 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
6621nnne0d 11675 . . . . . . 7 (𝜑𝑄 ≠ 0)
6756, 65, 45, 66div12d 11441 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
6863, 67eqtrd 2857 . . . . 5 (𝜑 → ((!‘𝑄) · e) = (𝑃 · ((!‘𝑄) / 𝑄)))
6921nnred 11640 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
7069leidd 11195 . . . . . . . 8 (𝜑𝑄𝑄)
71 facdiv 13643 . . . . . . . 8 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7254, 21, 70, 71syl3anc 1368 . . . . . . 7 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7372nnzd 12074 . . . . . 6 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
7464, 73zmulcld 12081 . . . . 5 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
7568, 74eqeltrd 2914 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℤ)
761, 56, 17fsummulc2 15130 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
772adantl 485 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
7877, 28syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
7978oveq2d 7156 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8056adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
812, 31sylan2 595 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8281nncnd 11641 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
83 facne0 13642 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ≠ 0)
8477, 83syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ≠ 0)
8580, 82, 84divrecd 11408 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8679, 85eqtr4d 2860 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
87 permnn 13682 . . . . . . . . 9 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8887adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
8986, 88eqeltrd 2914 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9089nnzd 12074 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
911, 90fsumzcl 15083 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9276, 91eqeltrd 2914 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9375, 92zsubcld 12080 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9461, 93eqeltrd 2914 . 2 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
95 0zd 11981 . . 3 (𝜑 → 0 ∈ ℤ)
9655nnrpd 12417 . . . . 5 (𝜑 → (!‘𝑄) ∈ ℝ+)
9796, 37rpmulcld 12435 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
9897rpgt0d 12422 . . 3 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
9922peano2nnd 11642 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
10099nnred 11640 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10123faccld 13640 . . . . . . . 8 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
102101, 22nnmulcld 11678 . . . . . . 7 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
103100, 102nndivred 11679 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10455nnrecred 11676 . . . . . 6 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
105 abs1 14648 . . . . . . . . . . . 12 (abs‘1) = 1
106105oveq1i 7150 . . . . . . . . . . 11 ((abs‘1)↑𝑛) = (1↑𝑛)
107106oveq1i 7150 . . . . . . . . . 10 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
108107mpteq2i 5134 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
1099, 108eqtr4i 2848 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
110 eqid 2822 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
111 1le1 11257 . . . . . . . . . 10 1 ≤ 1
112105, 111eqbrtri 5063 . . . . . . . . 9 (abs‘1) ≤ 1
113112a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) ≤ 1)
1149, 109, 110, 22, 13, 113eftlub 15453 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11537rprege0d 12426 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
116 absid 14647 . . . . . . . 8 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
117115, 116syl 17 . . . . . . 7 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118105oveq1i 7150 . . . . . . . . . 10 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
11922nnzd 12074 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℤ)
120 1exp 13454 . . . . . . . . . . 11 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
121119, 120syl 17 . . . . . . . . . 10 (𝜑 → (1↑(𝑄 + 1)) = 1)
122118, 121syl5eq 2869 . . . . . . . . 9 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
123122oveq1d 7155 . . . . . . . 8 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
124103recnd 10658 . . . . . . . . 9 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
125124mulid2d 10648 . . . . . . . 8 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
126123, 125eqtrd 2857 . . . . . . 7 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127114, 117, 1263brtr3d 5073 . . . . . 6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12822nnred 11640 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) ∈ ℝ)
129128, 128readdcld 10659 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
130128, 128remulcld 10660 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
131 1red 10631 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
13221nnge1d 11673 . . . . . . . . . . 11 (𝜑 → 1 ≤ 𝑄)
133 1nn 11636 . . . . . . . . . . . 12 1 ∈ ℕ
134 nnleltp1 12025 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
135133, 21, 134sylancr 590 . . . . . . . . . . 11 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136132, 135mpbid 235 . . . . . . . . . 10 (𝜑 → 1 < (𝑄 + 1))
137131, 128, 128, 136ltadd2dd 10788 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13822nncnd 11641 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℂ)
1391382timesd 11868 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
140 df-2 11688 . . . . . . . . . . . 12 2 = (1 + 1)
141131, 69, 131, 132leadd1dd 11243 . . . . . . . . . . . 12 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
142140, 141eqbrtrid 5077 . . . . . . . . . . 11 (𝜑 → 2 ≤ (𝑄 + 1))
143 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℝ)
14522nngt0d 11674 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑄 + 1))
146 lemul1 11481 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
147144, 128, 128, 145, 146syl112anc 1371 . . . . . . . . . . 11 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148142, 147mpbid 235 . . . . . . . . . 10 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
149139, 148eqbrtrrd 5066 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150100, 129, 130, 137, 149ltletrd 10789 . . . . . . . 8 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
151 facp1 13634 . . . . . . . . . . . . 13 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15254, 151syl 17 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
153152oveq1d 7155 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
154101nncnd 11641 . . . . . . . . . . . 12 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15555nnne0d 11675 . . . . . . . . . . . 12 (𝜑 → (!‘𝑄) ≠ 0)
156154, 56, 155divrecd 11408 . . . . . . . . . . 11 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
157138, 56, 155divcan3d 11410 . . . . . . . . . . 11 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
158153, 156, 1573eqtr3rd 2866 . . . . . . . . . 10 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
159158oveq1d 7155 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
160104recnd 10658 . . . . . . . . . 10 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
161154, 160, 138mul32d 10839 . . . . . . . . 9 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
162159, 161eqtrd 2857 . . . . . . . 8 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163150, 162breqtrd 5068 . . . . . . 7 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164102nnred 11640 . . . . . . . 8 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
165102nngt0d 11674 . . . . . . . 8 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
166 ltdivmul 11504 . . . . . . . 8 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
167100, 104, 164, 165, 166syl112anc 1371 . . . . . . 7 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168163, 167mpbird 260 . . . . . 6 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
16938, 103, 104, 127, 168lelttrd 10787 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17038, 131, 96ltmuldiv2d 12467 . . . . 5 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
171169, 170mpbird 260 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
172 0p1e1 11747 . . . 4 (0 + 1) = 1
173171, 172breqtrrdi 5084 . . 3 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
174 btwnnz 12046 . . 3 ((0 ∈ ℤ ∧ 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∧ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1)) → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17595, 98, 173, 174syl3anc 1368 . 2 (𝜑 → ¬ ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℤ)
17694, 175pm2.65i 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  cmpt 5122  dom cdm 5532  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  seqcseq 13364  cexp 13425  !cfa 13629  abscabs 14584  cli 14832  Σcsu 15033  eceu 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-e 15413
This theorem is referenced by:  eirr  15549
  Copyright terms: Public domain W3C validator