MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   GIF version

Theorem harmonic 15206
Description: The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 25588, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
harmonic.2 𝐻 = seq1( + , 𝐹)
Assertion
Ref Expression
harmonic ¬ 𝐻 ∈ dom ⇝

Proof of Theorem harmonic
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . . . 4 0 = (ℤ‘0)
2 0zd 11981 . . . 4 (𝐻 ∈ dom ⇝ → 0 ∈ ℤ)
3 1ex 10626 . . . . . 6 1 ∈ V
43fvconst2 6943 . . . . 5 (𝑘 ∈ ℕ0 → ((ℕ0 × {1})‘𝑘) = 1)
54adantl 485 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
6 1red 10631 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
7 harmonic.2 . . . . . . 7 𝐻 = seq1( + , 𝐹)
87eleq1i 2880 . . . . . 6 (𝐻 ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ )
98biimpi 219 . . . . 5 (𝐻 ∈ dom ⇝ → seq1( + , 𝐹) ∈ dom ⇝ )
10 oveq2 7143 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
11 harmonic.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
12 ovex 7168 . . . . . . . . 9 (1 / 𝑘) ∈ V
1310, 11, 12fvmpt 6745 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 / 𝑘))
14 nnrecre 11667 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1513, 14eqeltrd 2890 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
1615adantl 485 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
17 nnrp 12388 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817rpreccld 12429 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1918rpge0d 12423 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
2019, 13breqtrrd 5058 . . . . . . 7 (𝑘 ∈ ℕ → 0 ≤ (𝐹𝑘))
2120adantl 485 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
22 nnre 11632 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322lep1d 11560 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
24 nngt0 11656 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
25 peano2re 10802 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ)
27 peano2nn 11637 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
2827nngt0d 11674 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < (𝑘 + 1))
29 lerec 11512 . . . . . . . . . 10 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3022, 24, 26, 28, 29syl22anc 837 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3123, 30mpbid 235 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
32 oveq2 7143 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
33 ovex 7168 . . . . . . . . . 10 (1 / (𝑘 + 1)) ∈ V
3432, 11, 33fvmpt 6745 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3527, 34syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3631, 35, 133brtr4d 5062 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3736adantl 485 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
38 oveq2 7143 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3938fveq2d 6649 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗)))
4038, 39oveq12d 7153 . . . . . . . 8 (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
41 fconstmpt 5578 . . . . . . . . 9 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
42 2nn 11698 . . . . . . . . . . . . . 14 2 ∈ ℕ
43 nnexpcl 13438 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4442, 43mpan 689 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
45 oveq2 7143 . . . . . . . . . . . . . 14 (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘)))
46 ovex 7168 . . . . . . . . . . . . . 14 (1 / (2↑𝑘)) ∈ V
4745, 11, 46fvmpt 6745 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4844, 47syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4948oveq2d 7151 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘))))
50 nncn 11633 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ∈ ℂ)
51 nnne0 11659 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ≠ 0)
5250, 51recidd 11400 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℕ → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5344, 52syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5449, 53eqtrd 2833 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = 1)
5554mpteq2ia 5121 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ 1)
5641, 55eqtr4i 2824 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘))))
57 ovex 7168 . . . . . . . 8 ((2↑𝑗) · (𝐹‘(2↑𝑗))) ∈ V
5840, 56, 57fvmpt 6745 . . . . . . 7 (𝑗 ∈ ℕ0 → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
5958adantl 485 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0) → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
6016, 21, 37, 59climcnds 15198 . . . . 5 (𝐻 ∈ dom ⇝ → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝ ))
619, 60mpbid 235 . . . 4 (𝐻 ∈ dom ⇝ → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
621, 2, 5, 6, 61isumrecl 15112 . . 3 (𝐻 ∈ dom ⇝ → Σ𝑘 ∈ ℕ0 1 ∈ ℝ)
63 arch 11882 . . 3 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
6462, 63syl 17 . 2 (𝐻 ∈ dom ⇝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
65 fzfid 13336 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ∈ Fin)
66 ax-1cn 10584 . . . . . . 7 1 ∈ ℂ
67 fsumconst 15137 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
6865, 66, 67sylancl 589 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
69 nnnn0 11892 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7069adantl 485 . . . . . . . 8 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
71 hashfz1 13702 . . . . . . . 8 (𝑗 ∈ ℕ0 → (♯‘(1...𝑗)) = 𝑗)
7270, 71syl 17 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (♯‘(1...𝑗)) = 𝑗)
7372oveq1d 7150 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ((♯‘(1...𝑗)) · 1) = (𝑗 · 1))
74 nncn 11633 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7574adantl 485 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
7675mulid1d 10647 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗)
7768, 73, 763eqtrd 2837 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = 𝑗)
78 0zd 11981 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
79 elfznn 12931 . . . . . . . . 9 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
80 nnnn0 11892 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8179, 80syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0)
8281ssriv 3919 . . . . . . 7 (1...𝑗) ⊆ ℕ0
8382a1i 11 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ⊆ ℕ0)
844adantl 485 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
85 1red 10631 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
86 0le1 11152 . . . . . . 7 0 ≤ 1
8786a1i 11 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 1)
8861adantr 484 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
891, 78, 65, 83, 84, 85, 87, 88isumless 15192 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0 1)
9077, 89eqbrtrrd 5054 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0 1)
91 nnre 11632 . . . . 5 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
92 lenlt 10708 . . . . 5 ((𝑗 ∈ ℝ ∧ Σ𝑘 ∈ ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9391, 62, 92syl2anr 599 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9490, 93mpbid 235 . . 3 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9594nrexdv 3229 . 2 (𝐻 ∈ dom ⇝ → ¬ ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9664, 95pm2.65i 197 1 ¬ 𝐻 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  ...cfz 12885  seqcseq 13364  cexp 13425  chash 13686  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator