MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   GIF version

Theorem harmonic 14797
Description: The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 24949, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
harmonic.2 𝐻 = seq1( + , 𝐹)
Assertion
Ref Expression
harmonic ¬ 𝐻 ∈ dom ⇝

Proof of Theorem harmonic
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11928 . . . 4 0 = (ℤ‘0)
2 0zd 11595 . . . 4 (𝐻 ∈ dom ⇝ → 0 ∈ ℤ)
3 1ex 10240 . . . . . 6 1 ∈ V
43fvconst2 6615 . . . . 5 (𝑘 ∈ ℕ0 → ((ℕ0 × {1})‘𝑘) = 1)
54adantl 467 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
6 1red 10260 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
7 harmonic.2 . . . . . . 7 𝐻 = seq1( + , 𝐹)
87eleq1i 2841 . . . . . 6 (𝐻 ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ )
98biimpi 206 . . . . 5 (𝐻 ∈ dom ⇝ → seq1( + , 𝐹) ∈ dom ⇝ )
10 oveq2 6803 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
11 harmonic.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
12 ovex 6826 . . . . . . . . 9 (1 / 𝑘) ∈ V
1310, 11, 12fvmpt 6426 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 / 𝑘))
14 nnrecre 11262 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1513, 14eqeltrd 2850 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
1615adantl 467 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
17 nnrp 12044 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817rpreccld 12084 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1918rpge0d 12078 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
2019, 13breqtrrd 4815 . . . . . . 7 (𝑘 ∈ ℕ → 0 ≤ (𝐹𝑘))
2120adantl 467 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
22 nnre 11232 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322lep1d 11160 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
24 nngt0 11254 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
25 peano2re 10414 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ)
27 peano2nn 11237 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
2827nngt0d 11269 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < (𝑘 + 1))
29 lerec 11111 . . . . . . . . . 10 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3022, 24, 26, 28, 29syl22anc 1477 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3123, 30mpbid 222 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
32 oveq2 6803 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
33 ovex 6826 . . . . . . . . . 10 (1 / (𝑘 + 1)) ∈ V
3432, 11, 33fvmpt 6426 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3527, 34syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3631, 35, 133brtr4d 4819 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3736adantl 467 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
38 oveq2 6803 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3938fveq2d 6337 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗)))
4038, 39oveq12d 6813 . . . . . . . 8 (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
41 fconstmpt 5302 . . . . . . . . 9 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
42 2nn 11391 . . . . . . . . . . . . . 14 2 ∈ ℕ
43 nnexpcl 13079 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4442, 43mpan 670 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
45 oveq2 6803 . . . . . . . . . . . . . 14 (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘)))
46 ovex 6826 . . . . . . . . . . . . . 14 (1 / (2↑𝑘)) ∈ V
4745, 11, 46fvmpt 6426 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4844, 47syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4948oveq2d 6811 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘))))
50 nncn 11233 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ∈ ℂ)
51 nnne0 11258 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ≠ 0)
5250, 51recidd 11001 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℕ → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5344, 52syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5449, 53eqtrd 2805 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = 1)
5554mpteq2ia 4875 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ 1)
5641, 55eqtr4i 2796 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘))))
57 ovex 6826 . . . . . . . 8 ((2↑𝑗) · (𝐹‘(2↑𝑗))) ∈ V
5840, 56, 57fvmpt 6426 . . . . . . 7 (𝑗 ∈ ℕ0 → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
5958adantl 467 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0) → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
6016, 21, 37, 59climcnds 14789 . . . . 5 (𝐻 ∈ dom ⇝ → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝ ))
619, 60mpbid 222 . . . 4 (𝐻 ∈ dom ⇝ → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
621, 2, 5, 6, 61isumrecl 14703 . . 3 (𝐻 ∈ dom ⇝ → Σ𝑘 ∈ ℕ0 1 ∈ ℝ)
63 arch 11495 . . 3 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
6462, 63syl 17 . 2 (𝐻 ∈ dom ⇝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
65 fzfid 12979 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ∈ Fin)
66 ax-1cn 10199 . . . . . . 7 1 ∈ ℂ
67 fsumconst 14728 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
6865, 66, 67sylancl 574 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
69 nnnn0 11505 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7069adantl 467 . . . . . . . 8 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
71 hashfz1 13337 . . . . . . . 8 (𝑗 ∈ ℕ0 → (♯‘(1...𝑗)) = 𝑗)
7270, 71syl 17 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (♯‘(1...𝑗)) = 𝑗)
7372oveq1d 6810 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ((♯‘(1...𝑗)) · 1) = (𝑗 · 1))
74 nncn 11233 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7574adantl 467 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
7675mulid1d 10262 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗)
7768, 73, 763eqtrd 2809 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = 𝑗)
78 0zd 11595 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
79 elfznn 12576 . . . . . . . . 9 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
80 nnnn0 11505 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8179, 80syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0)
8281ssriv 3756 . . . . . . 7 (1...𝑗) ⊆ ℕ0
8382a1i 11 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ⊆ ℕ0)
844adantl 467 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
85 1red 10260 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
86 0le1 10756 . . . . . . 7 0 ≤ 1
8786a1i 11 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 1)
8861adantr 466 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
891, 78, 65, 83, 84, 85, 87, 88isumless 14783 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0 1)
9077, 89eqbrtrrd 4811 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0 1)
91 nnre 11232 . . . . 5 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
92 lenlt 10321 . . . . 5 ((𝑗 ∈ ℝ ∧ Σ𝑘 ∈ ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9391, 62, 92syl2anr 584 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9490, 93mpbid 222 . . 3 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9594nrexdv 3149 . 2 (𝐻 ∈ dom ⇝ → ¬ ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9664, 95pm2.65i 185 1 ¬ 𝐻 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382   = wceq 1631  wcel 2145  wrex 3062  wss 3723  {csn 4317   class class class wbr 4787  cmpt 4864   × cxp 5248  dom cdm 5250  cfv 6030  (class class class)co 6795  Fincfn 8112  cc 10139  cr 10140  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146   < clt 10279  cle 10280   / cdiv 10889  cn 11225  2c2 11275  0cn0 11498  ...cfz 12532  seqcseq 13007  cexp 13066  chash 13320  cli 14422  Σcsu 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-pm 8015  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-ico 12385  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator