Step | Hyp | Ref
| Expression |
1 | | nn0uz 12549 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 12261 |
. . . 4
⊢ (𝐻 ∈ dom ⇝ → 0
∈ ℤ) |
3 | | 1ex 10902 |
. . . . . 6
⊢ 1 ∈
V |
4 | 3 | fvconst2 7061 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((ℕ0 × {1})‘𝑘) = 1) |
5 | 4 | adantl 481 |
. . . 4
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {1})‘𝑘) = 1) |
6 | | 1red 10907 |
. . . 4
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0)
→ 1 ∈ ℝ) |
7 | | harmonic.2 |
. . . . . . 7
⊢ 𝐻 = seq1( + , 𝐹) |
8 | 7 | eleq1i 2829 |
. . . . . 6
⊢ (𝐻 ∈ dom ⇝ ↔ seq1(
+ , 𝐹) ∈ dom ⇝
) |
9 | 8 | biimpi 215 |
. . . . 5
⊢ (𝐻 ∈ dom ⇝ → seq1(
+ , 𝐹) ∈ dom ⇝
) |
10 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
11 | | harmonic.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
12 | | ovex 7288 |
. . . . . . . . 9
⊢ (1 /
𝑘) ∈
V |
13 | 10, 11, 12 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (1 / 𝑘)) |
14 | | nnrecre 11945 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
15 | 13, 14 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℝ) |
16 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
17 | | nnrp 12670 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
18 | 17 | rpreccld 12711 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
19 | 18 | rpge0d 12705 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ 𝑘)) |
20 | 19, 13 | breqtrrd 5098 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 0 ≤
(𝐹‘𝑘)) |
21 | 20 | adantl 481 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤
(𝐹‘𝑘)) |
22 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
23 | 22 | lep1d 11836 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1)) |
24 | | nngt0 11934 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
25 | | peano2re 11078 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
26 | 22, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℝ) |
27 | | peano2nn 11915 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
28 | 27 | nngt0d 11952 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 0 <
(𝑘 + 1)) |
29 | | lerec 11788 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℝ ∧ 0 <
𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0
< (𝑘 + 1))) →
(𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘))) |
30 | 22, 24, 26, 28, 29 | syl22anc 835 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘))) |
31 | 23, 30 | mpbid 231 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1 /
(𝑘 + 1)) ≤ (1 / 𝑘)) |
32 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1))) |
33 | | ovex 7288 |
. . . . . . . . . 10
⊢ (1 /
(𝑘 + 1)) ∈
V |
34 | 32, 11, 33 | fvmpt 6857 |
. . . . . . . . 9
⊢ ((𝑘 + 1) ∈ ℕ →
(𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1))) |
35 | 27, 34 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1))) |
36 | 31, 35, 13 | 3brtr4d 5102 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
37 | 36 | adantl 481 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
38 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗)) |
39 | 38 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗))) |
40 | 38, 39 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗)))) |
41 | | fconstmpt 5640 |
. . . . . . . . 9
⊢
(ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦
1) |
42 | | 2nn 11976 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
43 | | nnexpcl 13723 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
44 | 42, 43 | mpan 686 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (2↑𝑘) ∈
ℕ) |
45 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘))) |
46 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (1 /
(2↑𝑘)) ∈
V |
47 | 45, 11, 46 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢
((2↑𝑘) ∈
ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘))) |
48 | 44, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘))) |
49 | 48 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((2↑𝑘) ·
(𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘)))) |
50 | | nncn 11911 |
. . . . . . . . . . . . 13
⊢
((2↑𝑘) ∈
ℕ → (2↑𝑘)
∈ ℂ) |
51 | | nnne0 11937 |
. . . . . . . . . . . . 13
⊢
((2↑𝑘) ∈
ℕ → (2↑𝑘)
≠ 0) |
52 | 50, 51 | recidd 11676 |
. . . . . . . . . . . 12
⊢
((2↑𝑘) ∈
ℕ → ((2↑𝑘)
· (1 / (2↑𝑘)))
= 1) |
53 | 44, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((2↑𝑘) ·
(1 / (2↑𝑘))) =
1) |
54 | 49, 53 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ ((2↑𝑘) ·
(𝐹‘(2↑𝑘))) = 1) |
55 | 54 | mpteq2ia 5173 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↦ ((2↑𝑘)
· (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦
1) |
56 | 41, 55 | eqtr4i 2769 |
. . . . . . . 8
⊢
(ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦
((2↑𝑘) · (𝐹‘(2↑𝑘)))) |
57 | | ovex 7288 |
. . . . . . . 8
⊢
((2↑𝑗) ·
(𝐹‘(2↑𝑗))) ∈ V |
58 | 40, 56, 57 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ0
→ ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗)))) |
59 | 58 | adantl 481 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0)
→ ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗)))) |
60 | 16, 21, 37, 59 | climcnds 15491 |
. . . . 5
⊢ (𝐻 ∈ dom ⇝ →
(seq1( + , 𝐹) ∈ dom
⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝
)) |
61 | 9, 60 | mpbid 231 |
. . . 4
⊢ (𝐻 ∈ dom ⇝ → seq0(
+ , (ℕ0 × {1})) ∈ dom ⇝ ) |
62 | 1, 2, 5, 6, 61 | isumrecl 15405 |
. . 3
⊢ (𝐻 ∈ dom ⇝ →
Σ𝑘 ∈
ℕ0 1 ∈ ℝ) |
63 | | arch 12160 |
. . 3
⊢
(Σ𝑘 ∈
ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗) |
64 | 62, 63 | syl 17 |
. 2
⊢ (𝐻 ∈ dom ⇝ →
∃𝑗 ∈ ℕ
Σ𝑘 ∈
ℕ0 1 < 𝑗) |
65 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
(1...𝑗) ∈
Fin) |
66 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
67 | | fsumconst 15430 |
. . . . . . 7
⊢
(((1...𝑗) ∈ Fin
∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1)) |
68 | 65, 66, 67 | sylancl 585 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1)) |
69 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
70 | 69 | adantl 481 |
. . . . . . . 8
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
71 | | hashfz1 13988 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ (♯‘(1...𝑗)) = 𝑗) |
72 | 70, 71 | syl 17 |
. . . . . . 7
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
(♯‘(1...𝑗)) =
𝑗) |
73 | 72 | oveq1d 7270 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
((♯‘(1...𝑗))
· 1) = (𝑗 ·
1)) |
74 | | nncn 11911 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
75 | 74 | adantl 481 |
. . . . . . 7
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℂ) |
76 | 75 | mulid1d 10923 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗) |
77 | 68, 73, 76 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈ (1...𝑗)1 = 𝑗) |
78 | | 0zd 12261 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈
ℤ) |
79 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ) |
80 | | nnnn0 12170 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
81 | 79, 80 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0) |
82 | 81 | ssriv 3921 |
. . . . . . 7
⊢
(1...𝑗) ⊆
ℕ0 |
83 | 82 | a1i 11 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
(1...𝑗) ⊆
ℕ0) |
84 | 4 | adantl 481 |
. . . . . 6
⊢ (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {1})‘𝑘) = 1) |
85 | | 1red 10907 |
. . . . . 6
⊢ (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0)
→ 1 ∈ ℝ) |
86 | | 0le1 11428 |
. . . . . . 7
⊢ 0 ≤
1 |
87 | 86 | a1i 11 |
. . . . . 6
⊢ (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0)
→ 0 ≤ 1) |
88 | 61 | adantr 480 |
. . . . . 6
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( +
, (ℕ0 × {1})) ∈ dom ⇝ ) |
89 | 1, 78, 65, 83, 84, 85, 87, 88 | isumless 15485 |
. . . . 5
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) →
Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0
1) |
90 | 77, 89 | eqbrtrrd 5094 |
. . . 4
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0
1) |
91 | | nnre 11910 |
. . . . 5
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
92 | | lenlt 10984 |
. . . . 5
⊢ ((𝑗 ∈ ℝ ∧
Σ𝑘 ∈
ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬
Σ𝑘 ∈
ℕ0 1 < 𝑗)) |
93 | 91, 62, 92 | syl2anr 596 |
. . . 4
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬
Σ𝑘 ∈
ℕ0 1 < 𝑗)) |
94 | 90, 93 | mpbid 231 |
. . 3
⊢ ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬
Σ𝑘 ∈
ℕ0 1 < 𝑗) |
95 | 94 | nrexdv 3197 |
. 2
⊢ (𝐻 ∈ dom ⇝ → ¬
∃𝑗 ∈ ℕ
Σ𝑘 ∈
ℕ0 1 < 𝑗) |
96 | 64, 95 | pm2.65i 193 |
1
⊢ ¬
𝐻 ∈ dom
⇝ |