MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   GIF version

Theorem harmonic 15896
Description: The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 27047, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
harmonic.2 𝐻 = seq1( + , 𝐹)
Assertion
Ref Expression
harmonic ¬ 𝐻 ∈ dom ⇝

Proof of Theorem harmonic
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12921 . . . 4 0 = (ℤ‘0)
2 0zd 12627 . . . 4 (𝐻 ∈ dom ⇝ → 0 ∈ ℤ)
3 1ex 11258 . . . . . 6 1 ∈ V
43fvconst2 7225 . . . . 5 (𝑘 ∈ ℕ0 → ((ℕ0 × {1})‘𝑘) = 1)
54adantl 481 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
6 1red 11263 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
7 harmonic.2 . . . . . . 7 𝐻 = seq1( + , 𝐹)
87eleq1i 2831 . . . . . 6 (𝐻 ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ )
98biimpi 216 . . . . 5 (𝐻 ∈ dom ⇝ → seq1( + , 𝐹) ∈ dom ⇝ )
10 oveq2 7440 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
11 harmonic.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
12 ovex 7465 . . . . . . . . 9 (1 / 𝑘) ∈ V
1310, 11, 12fvmpt 7015 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 / 𝑘))
14 nnrecre 12309 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1513, 14eqeltrd 2840 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
1615adantl 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
17 nnrp 13047 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817rpreccld 13088 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1918rpge0d 13082 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
2019, 13breqtrrd 5170 . . . . . . 7 (𝑘 ∈ ℕ → 0 ≤ (𝐹𝑘))
2120adantl 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
22 nnre 12274 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322lep1d 12200 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
24 nngt0 12298 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
25 peano2re 11435 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ)
27 peano2nn 12279 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
2827nngt0d 12316 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < (𝑘 + 1))
29 lerec 12152 . . . . . . . . . 10 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3022, 24, 26, 28, 29syl22anc 838 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3123, 30mpbid 232 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
32 oveq2 7440 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
33 ovex 7465 . . . . . . . . . 10 (1 / (𝑘 + 1)) ∈ V
3432, 11, 33fvmpt 7015 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3527, 34syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3631, 35, 133brtr4d 5174 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3736adantl 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
38 oveq2 7440 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3938fveq2d 6909 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗)))
4038, 39oveq12d 7450 . . . . . . . 8 (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
41 fconstmpt 5746 . . . . . . . . 9 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
42 2nn 12340 . . . . . . . . . . . . . 14 2 ∈ ℕ
43 nnexpcl 14116 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4442, 43mpan 690 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
45 oveq2 7440 . . . . . . . . . . . . . 14 (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘)))
46 ovex 7465 . . . . . . . . . . . . . 14 (1 / (2↑𝑘)) ∈ V
4745, 11, 46fvmpt 7015 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4844, 47syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4948oveq2d 7448 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘))))
50 nncn 12275 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ∈ ℂ)
51 nnne0 12301 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ≠ 0)
5250, 51recidd 12039 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℕ → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5344, 52syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5449, 53eqtrd 2776 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = 1)
5554mpteq2ia 5244 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ 1)
5641, 55eqtr4i 2767 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘))))
57 ovex 7465 . . . . . . . 8 ((2↑𝑗) · (𝐹‘(2↑𝑗))) ∈ V
5840, 56, 57fvmpt 7015 . . . . . . 7 (𝑗 ∈ ℕ0 → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
5958adantl 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0) → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
6016, 21, 37, 59climcnds 15888 . . . . 5 (𝐻 ∈ dom ⇝ → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝ ))
619, 60mpbid 232 . . . 4 (𝐻 ∈ dom ⇝ → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
621, 2, 5, 6, 61isumrecl 15802 . . 3 (𝐻 ∈ dom ⇝ → Σ𝑘 ∈ ℕ0 1 ∈ ℝ)
63 arch 12525 . . 3 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
6462, 63syl 17 . 2 (𝐻 ∈ dom ⇝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
65 fzfid 14015 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ∈ Fin)
66 ax-1cn 11214 . . . . . . 7 1 ∈ ℂ
67 fsumconst 15827 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
6865, 66, 67sylancl 586 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
69 nnnn0 12535 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7069adantl 481 . . . . . . . 8 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
71 hashfz1 14386 . . . . . . . 8 (𝑗 ∈ ℕ0 → (♯‘(1...𝑗)) = 𝑗)
7270, 71syl 17 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (♯‘(1...𝑗)) = 𝑗)
7372oveq1d 7447 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ((♯‘(1...𝑗)) · 1) = (𝑗 · 1))
74 nncn 12275 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7574adantl 481 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
7675mulridd 11279 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗)
7768, 73, 763eqtrd 2780 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = 𝑗)
78 0zd 12627 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
79 elfznn 13594 . . . . . . . . 9 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
80 nnnn0 12535 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8179, 80syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0)
8281ssriv 3986 . . . . . . 7 (1...𝑗) ⊆ ℕ0
8382a1i 11 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ⊆ ℕ0)
844adantl 481 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
85 1red 11263 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
86 0le1 11787 . . . . . . 7 0 ≤ 1
8786a1i 11 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 1)
8861adantr 480 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
891, 78, 65, 83, 84, 85, 87, 88isumless 15882 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0 1)
9077, 89eqbrtrrd 5166 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0 1)
91 nnre 12274 . . . . 5 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
92 lenlt 11340 . . . . 5 ((𝑗 ∈ ℝ ∧ Σ𝑘 ∈ ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9391, 62, 92syl2anr 597 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9490, 93mpbid 232 . . 3 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9594nrexdv 3148 . 2 (𝐻 ∈ dom ⇝ → ¬ ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9664, 95pm2.65i 194 1 ¬ 𝐻 ∈ dom ⇝
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224   × cxp 5682  dom cdm 5684  cfv 6560  (class class class)co 7432  Fincfn 8986  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297   / cdiv 11921  cn 12267  2c2 12322  0cn0 12528  ...cfz 13548  seqcseq 14043  cexp 14103  chash 14370  cli 15521  Σcsu 15723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator