Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonic Structured version   Visualization version   GIF version

Theorem harmonic 15206
 Description: The harmonic series 𝐻 diverges. This fact follows from the stronger emcl 25494, which establishes that the harmonic series grows as log𝑛 + γ + o(1), but this uses a more elementary method, attributed to Nicole Oresme (1323-1382). This is Metamath 100 proof #34. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
harmonic.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
harmonic.2 𝐻 = seq1( + , 𝐹)
Assertion
Ref Expression
harmonic ¬ 𝐻 ∈ dom ⇝

Proof of Theorem harmonic
Dummy variables 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12272 . . . 4 0 = (ℤ‘0)
2 0zd 11985 . . . 4 (𝐻 ∈ dom ⇝ → 0 ∈ ℤ)
3 1ex 10629 . . . . . 6 1 ∈ V
43fvconst2 6965 . . . . 5 (𝑘 ∈ ℕ0 → ((ℕ0 × {1})‘𝑘) = 1)
54adantl 482 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
6 1red 10634 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
7 harmonic.2 . . . . . . 7 𝐻 = seq1( + , 𝐹)
87eleq1i 2907 . . . . . 6 (𝐻 ∈ dom ⇝ ↔ seq1( + , 𝐹) ∈ dom ⇝ )
98biimpi 217 . . . . 5 (𝐻 ∈ dom ⇝ → seq1( + , 𝐹) ∈ dom ⇝ )
10 oveq2 7159 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
11 harmonic.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
12 ovex 7184 . . . . . . . . 9 (1 / 𝑘) ∈ V
1310, 11, 12fvmpt 6764 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 / 𝑘))
14 nnrecre 11671 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1513, 14eqeltrd 2917 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
1615adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
17 nnrp 12393 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1817rpreccld 12434 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
1918rpge0d 12428 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
2019, 13breqtrrd 5090 . . . . . . 7 (𝑘 ∈ ℕ → 0 ≤ (𝐹𝑘))
2120adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
22 nnre 11637 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2322lep1d 11563 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
24 nngt0 11660 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
25 peano2re 10805 . . . . . . . . . . 11 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
2622, 25syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ)
27 peano2nn 11642 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
2827nngt0d 11678 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < (𝑘 + 1))
29 lerec 11515 . . . . . . . . . 10 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3022, 24, 26, 28, 29syl22anc 836 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
3123, 30mpbid 233 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
32 oveq2 7159 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
33 ovex 7184 . . . . . . . . . 10 (1 / (𝑘 + 1)) ∈ V
3432, 11, 33fvmpt 6764 . . . . . . . . 9 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3527, 34syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
3631, 35, 133brtr4d 5094 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
3736adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
38 oveq2 7159 . . . . . . . . 9 (𝑘 = 𝑗 → (2↑𝑘) = (2↑𝑗))
3938fveq2d 6670 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐹‘(2↑𝑘)) = (𝐹‘(2↑𝑗)))
4038, 39oveq12d 7169 . . . . . . . 8 (𝑘 = 𝑗 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
41 fconstmpt 5612 . . . . . . . . 9 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ 1)
42 2nn 11702 . . . . . . . . . . . . . 14 2 ∈ ℕ
43 nnexpcl 13435 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
4442, 43mpan 686 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
45 oveq2 7159 . . . . . . . . . . . . . 14 (𝑛 = (2↑𝑘) → (1 / 𝑛) = (1 / (2↑𝑘)))
46 ovex 7184 . . . . . . . . . . . . . 14 (1 / (2↑𝑘)) ∈ V
4745, 11, 46fvmpt 6764 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4844, 47syl 17 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹‘(2↑𝑘)) = (1 / (2↑𝑘)))
4948oveq2d 7167 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = ((2↑𝑘) · (1 / (2↑𝑘))))
50 nncn 11638 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ∈ ℂ)
51 nnne0 11663 . . . . . . . . . . . . 13 ((2↑𝑘) ∈ ℕ → (2↑𝑘) ≠ 0)
5250, 51recidd 11403 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℕ → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5344, 52syl 17 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (1 / (2↑𝑘))) = 1)
5449, 53eqtrd 2860 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2↑𝑘) · (𝐹‘(2↑𝑘))) = 1)
5554mpteq2ia 5153 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘)))) = (𝑘 ∈ ℕ0 ↦ 1)
5641, 55eqtr4i 2851 . . . . . . . 8 (ℕ0 × {1}) = (𝑘 ∈ ℕ0 ↦ ((2↑𝑘) · (𝐹‘(2↑𝑘))))
57 ovex 7184 . . . . . . . 8 ((2↑𝑗) · (𝐹‘(2↑𝑗))) ∈ V
5840, 56, 57fvmpt 6764 . . . . . . 7 (𝑗 ∈ ℕ0 → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
5958adantl 482 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0) → ((ℕ0 × {1})‘𝑗) = ((2↑𝑗) · (𝐹‘(2↑𝑗))))
6016, 21, 37, 59climcnds 15198 . . . . 5 (𝐻 ∈ dom ⇝ → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq0( + , (ℕ0 × {1})) ∈ dom ⇝ ))
619, 60mpbid 233 . . . 4 (𝐻 ∈ dom ⇝ → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
621, 2, 5, 6, 61isumrecl 15112 . . 3 (𝐻 ∈ dom ⇝ → Σ𝑘 ∈ ℕ0 1 ∈ ℝ)
63 arch 11886 . . 3 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
6462, 63syl 17 . 2 (𝐻 ∈ dom ⇝ → ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
65 fzfid 13334 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ∈ Fin)
66 ax-1cn 10587 . . . . . . 7 1 ∈ ℂ
67 fsumconst 15137 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
6865, 66, 67sylancl 586 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = ((♯‘(1...𝑗)) · 1))
69 nnnn0 11896 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7069adantl 482 . . . . . . . 8 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
71 hashfz1 13699 . . . . . . . 8 (𝑗 ∈ ℕ0 → (♯‘(1...𝑗)) = 𝑗)
7270, 71syl 17 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (♯‘(1...𝑗)) = 𝑗)
7372oveq1d 7166 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ((♯‘(1...𝑗)) · 1) = (𝑗 · 1))
74 nncn 11638 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
7574adantl 482 . . . . . . 7 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
7675mulid1d 10650 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 · 1) = 𝑗)
7768, 73, 763eqtrd 2864 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 = 𝑗)
78 0zd 11985 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℤ)
79 elfznn 12929 . . . . . . . . 9 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
80 nnnn0 11896 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
8179, 80syl 17 . . . . . . . 8 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ0)
8281ssriv 3974 . . . . . . 7 (1...𝑗) ⊆ ℕ0
8382a1i 11 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (1...𝑗) ⊆ ℕ0)
844adantl 482 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {1})‘𝑘) = 1)
85 1red 10634 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℝ)
86 0le1 11155 . . . . . . 7 0 ≤ 1
8786a1i 11 . . . . . 6 (((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 0 ≤ 1)
8861adantr 481 . . . . . 6 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → seq0( + , (ℕ0 × {1})) ∈ dom ⇝ )
891, 78, 65, 83, 84, 85, 87, 88isumless 15192 . . . . 5 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)1 ≤ Σ𝑘 ∈ ℕ0 1)
9077, 89eqbrtrrd 5086 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → 𝑗 ≤ Σ𝑘 ∈ ℕ0 1)
91 nnre 11637 . . . . 5 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
92 lenlt 10711 . . . . 5 ((𝑗 ∈ ℝ ∧ Σ𝑘 ∈ ℕ0 1 ∈ ℝ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9391, 62, 92syl2anr 596 . . . 4 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ Σ𝑘 ∈ ℕ0 1 ↔ ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗))
9490, 93mpbid 233 . . 3 ((𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ) → ¬ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9594nrexdv 3274 . 2 (𝐻 ∈ dom ⇝ → ¬ ∃𝑗 ∈ ℕ Σ𝑘 ∈ ℕ0 1 < 𝑗)
9664, 95pm2.65i 195 1 ¬ 𝐻 ∈ dom ⇝
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2106  ∃wrex 3143   ⊆ wss 3939  {csn 4563   class class class wbr 5062   ↦ cmpt 5142   × cxp 5551  dom cdm 5553  ‘cfv 6351  (class class class)co 7151  Fincfn 8501  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667   ≤ cle 10668   / cdiv 11289  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ...cfz 12885  seqcseq 13362  ↑cexp 13422  ♯chash 13683   ⇝ cli 14834  Σcsu 15035 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-ico 12737  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator