MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom0OLD Structured version   Visualization version   GIF version

Theorem sdom0OLD 8921
Description: Obsolete version of sdom0 8920 as of 29-Nov-2024. (Contributed by NM, 26-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sdom0OLD ¬ 𝐴 ≺ ∅

Proof of Theorem sdom0OLD
StepHypRef Expression
1 relsdom 8760 . . . 4 Rel ≺
21brrelex1i 5645 . . 3 (𝐴 ≺ ∅ → 𝐴 ∈ V)
3 0domg 8912 . . 3 (𝐴 ∈ V → ∅ ≼ 𝐴)
42, 3syl 17 . 2 (𝐴 ≺ ∅ → ∅ ≼ 𝐴)
5 domnsym 8911 . . 3 (∅ ≼ 𝐴 → ¬ 𝐴 ≺ ∅)
65con2i 139 . 2 (𝐴 ≺ ∅ → ¬ ∅ ≼ 𝐴)
74, 6pm2.65i 193 1 ¬ 𝐴 ≺ ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2101  Vcvv 3434  c0 4259   class class class wbr 5077  cdom 8751  csdm 8752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator