![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzp1disj | Structured version Visualization version GIF version |
Description: (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fzp1disj | ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 13588 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
2 | elfzel2 13582 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
3 | 2 | zred 12747 | . . . 4 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ) |
4 | ltp1 12134 | . . . . 5 ⊢ (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1)) | |
5 | peano2re 11463 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
6 | ltnle 11369 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
7 | 5, 6 | mpdan 686 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
8 | 4, 7 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁) |
9 | 3, 8 | syl 17 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → ¬ (𝑁 + 1) ≤ 𝑁) |
10 | 1, 9 | pm2.65i 194 | . 2 ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) |
11 | disjsn 4736 | . 2 ⊢ (((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) | |
12 | 10, 11 | mpbir 231 | 1 ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ∅c0 4352 {csn 4648 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzdifsuc 13644 fseq1p1m1 13658 fzennn 14019 gsummptfzsplit 19974 telgsumfzslem 20030 imasdsf1olem 24404 wlkp1 29717 esumfzf 34033 subfacp1lem6 35153 mapfzcons 42672 mapfzcons1 42673 mapfzcons2 42675 sge0p1 46335 |
Copyright terms: Public domain | W3C validator |