![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzp1disj | Structured version Visualization version GIF version |
Description: (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fzp1disj | ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 13547 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
2 | elfzel2 13541 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
3 | 2 | zred 12706 | . . . 4 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ) |
4 | ltp1 12094 | . . . . 5 ⊢ (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1)) | |
5 | peano2re 11427 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
6 | ltnle 11333 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
7 | 5, 6 | mpdan 685 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
8 | 4, 7 | mpbid 231 | . . . 4 ⊢ (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁) |
9 | 3, 8 | syl 17 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → ¬ (𝑁 + 1) ≤ 𝑁) |
10 | 1, 9 | pm2.65i 193 | . 2 ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) |
11 | disjsn 4720 | . 2 ⊢ (((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) | |
12 | 10, 11 | mpbir 230 | 1 ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ∅c0 4326 {csn 4632 class class class wbr 5152 (class class class)co 7426 ℝcr 11147 1c1 11149 + caddc 11151 < clt 11288 ≤ cle 11289 ...cfz 13526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-z 12599 df-uz 12863 df-fz 13527 |
This theorem is referenced by: fzdifsuc 13603 fseq1p1m1 13617 fzennn 13975 gsummptfzsplit 19901 telgsumfzslem 19957 imasdsf1olem 24307 wlkp1 29523 esumfzf 33729 subfacp1lem6 34836 mapfzcons 42185 mapfzcons1 42186 mapfzcons2 42188 sge0p1 45849 |
Copyright terms: Public domain | W3C validator |