MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzp1disj Structured version   Visualization version   GIF version

Theorem fzp1disj 13566
Description: (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzp1disj ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅

Proof of Theorem fzp1disj
StepHypRef Expression
1 elfzle2 13511 . . 3 ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁)
2 elfzel2 13505 . . . . 5 ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
32zred 12670 . . . 4 ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ)
4 ltp1 12058 . . . . 5 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
5 peano2re 11391 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6 ltnle 11297 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
75, 6mpdan 684 . . . . 5 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
84, 7mpbid 231 . . . 4 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
93, 8syl 17 . . 3 ((𝑁 + 1) ∈ (𝑀...𝑁) → ¬ (𝑁 + 1) ≤ 𝑁)
101, 9pm2.65i 193 . 2 ¬ (𝑁 + 1) ∈ (𝑀...𝑁)
11 disjsn 4710 . 2 (((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
1210, 11mpbir 230 1 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  cin 3942  c0 4317  {csn 4623   class class class wbr 5141  (class class class)co 7405  cr 11111  1c1 11113   + caddc 11115   < clt 11252  cle 11253  ...cfz 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-z 12563  df-uz 12827  df-fz 13491
This theorem is referenced by:  fzdifsuc  13567  fseq1p1m1  13581  fzennn  13939  gsummptfzsplit  19852  telgsumfzslem  19908  imasdsf1olem  24234  wlkp1  29447  esumfzf  33597  subfacp1lem6  34704  mapfzcons  42032  mapfzcons1  42033  mapfzcons2  42035  sge0p1  45702
  Copyright terms: Public domain W3C validator