| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzp1disj | Structured version Visualization version GIF version | ||
| Description: (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fzp1disj | ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 13545 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁) | |
| 2 | elfzel2 13539 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
| 3 | 2 | zred 12697 | . . . 4 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ) |
| 4 | ltp1 12081 | . . . . 5 ⊢ (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1)) | |
| 5 | peano2re 11408 | . . . . . 6 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 6 | ltnle 11314 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) | |
| 7 | 5, 6 | mpdan 687 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
| 8 | 4, 7 | mpbid 232 | . . . 4 ⊢ (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁) |
| 9 | 3, 8 | syl 17 | . . 3 ⊢ ((𝑁 + 1) ∈ (𝑀...𝑁) → ¬ (𝑁 + 1) ≤ 𝑁) |
| 10 | 1, 9 | pm2.65i 194 | . 2 ⊢ ¬ (𝑁 + 1) ∈ (𝑀...𝑁) |
| 11 | disjsn 4687 | . 2 ⊢ (((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ ¬ (𝑁 + 1) ∈ (𝑀...𝑁)) | |
| 12 | 10, 11 | mpbir 231 | 1 ⊢ ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ∅c0 4308 {csn 4601 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: fzdifsuc 13601 fseq1p1m1 13615 fzennn 13986 gsummptfzsplit 19913 telgsumfzslem 19969 imasdsf1olem 24312 wlkp1 29661 esumfzf 34100 subfacp1lem6 35207 mapfzcons 42739 mapfzcons1 42740 mapfzcons2 42742 sge0p1 46443 |
| Copyright terms: Public domain | W3C validator |