MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzp1disj Structured version   Visualization version   GIF version

Theorem fzp1disj 13602
Description: (𝑀...(𝑁 + 1)) is the disjoint union of (𝑀...𝑁) with {(𝑁 + 1)}. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzp1disj ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅

Proof of Theorem fzp1disj
StepHypRef Expression
1 elfzle2 13547 . . 3 ((𝑁 + 1) ∈ (𝑀...𝑁) → (𝑁 + 1) ≤ 𝑁)
2 elfzel2 13541 . . . . 5 ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
32zred 12706 . . . 4 ((𝑁 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ)
4 ltp1 12094 . . . . 5 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
5 peano2re 11427 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6 ltnle 11333 . . . . . 6 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
75, 6mpdan 685 . . . . 5 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
84, 7mpbid 231 . . . 4 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
93, 8syl 17 . . 3 ((𝑁 + 1) ∈ (𝑀...𝑁) → ¬ (𝑁 + 1) ≤ 𝑁)
101, 9pm2.65i 193 . 2 ¬ (𝑁 + 1) ∈ (𝑀...𝑁)
11 disjsn 4720 . 2 (((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ ¬ (𝑁 + 1) ∈ (𝑀...𝑁))
1210, 11mpbir 230 1 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  cin 3948  c0 4326  {csn 4632   class class class wbr 5152  (class class class)co 7426  cr 11147  1c1 11149   + caddc 11151   < clt 11288  cle 11289  ...cfz 13526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-z 12599  df-uz 12863  df-fz 13527
This theorem is referenced by:  fzdifsuc  13603  fseq1p1m1  13617  fzennn  13975  gsummptfzsplit  19901  telgsumfzslem  19957  imasdsf1olem  24307  wlkp1  29523  esumfzf  33729  subfacp1lem6  34836  mapfzcons  42185  mapfzcons1  42186  mapfzcons2  42188  sge0p1  45849
  Copyright terms: Public domain W3C validator