| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgredlemb | Structured version Visualization version GIF version | ||
| Description: The reduced word that forms the base of the sequence in efgsval 19661 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
| efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
| efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
| efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
| efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
| efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
| efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
| efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
| efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
| efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
| efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
| efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
| efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
| efgredlemb.8 | ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) |
| Ref | Expression |
|---|---|
| efgredlemb | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | efgredlem.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
| 8 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
| 9 | fveq2 6858 | . . . . . . . . . 10 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (♯‘(𝑆‘𝐴)) = (♯‘(𝑆‘𝐵))) | |
| 10 | 9 | breq2d 5119 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) ↔ (♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)))) |
| 11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 12 | 11 | 2ralbidv 3201 | . . . . . . 7 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 14 | 7, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
| 15 | efgredlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
| 16 | efgredlem.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
| 17 | 8 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑆‘𝐴)) |
| 18 | efgredlem.5 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
| 19 | eqcom 2736 | . . . . . 6 ⊢ ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0)) | |
| 20 | 18, 19 | sylnib 328 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘0) = (𝐴‘0)) |
| 21 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
| 22 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
| 23 | efgredlemb.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) | |
| 24 | efgredlemb.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) | |
| 25 | efgredlemb.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) | |
| 26 | efgredlemb.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) | |
| 27 | efgredlemb.7 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) | |
| 28 | efgredlemb.6 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) | |
| 29 | efgredlemb.8 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) | |
| 30 | eqcom 2736 | . . . . . 6 ⊢ ((𝐴‘𝐾) = (𝐵‘𝐿) ↔ (𝐵‘𝐿) = (𝐴‘𝐾)) | |
| 31 | 29, 30 | sylnib 328 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘𝐿) = (𝐴‘𝐾)) |
| 32 | 1, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31 | efgredlemc 19675 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐵‘0) = (𝐴‘0))) |
| 33 | 32, 19 | imbitrrdi 252 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐴‘0) = (𝐵‘0))) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29 | efgredlemc 19675 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) |
| 35 | 24 | elfzelzd 13486 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 23 | elfzelzd 13486 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 37 | uztric 12817 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) | |
| 38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) |
| 39 | 33, 34, 38 | mpjaod 860 | . 2 ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) |
| 40 | 39, 18 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∖ cdif 3911 ∅c0 4296 {csn 4589 〈cop 4595 〈cotp 4597 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 I cid 5532 × cxp 5636 dom cdm 5638 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1oc1o 8427 2oc2o 8428 0cc0 11068 1c1 11069 < clt 11208 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Word cword 14478 splice csplice 14714 〈“cs2 14807 ~FG cefg 19636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-s2 14814 |
| This theorem is referenced by: efgredlem 19677 |
| Copyright terms: Public domain | W3C validator |