| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgredlemb | Structured version Visualization version GIF version | ||
| Description: The reduced word that forms the base of the sequence in efgsval 19653 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
| efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
| efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
| efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
| efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
| efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
| efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
| efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
| efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
| efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
| efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
| efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
| efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
| efgredlemb.8 | ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) |
| Ref | Expression |
|---|---|
| efgredlemb | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
| 2 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
| 3 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
| 4 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
| 5 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
| 6 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 7 | efgredlem.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
| 8 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
| 9 | fveq2 6831 | . . . . . . . . . 10 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (♯‘(𝑆‘𝐴)) = (♯‘(𝑆‘𝐵))) | |
| 10 | 9 | breq2d 5107 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) ↔ (♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)))) |
| 11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 12 | 11 | 2ralbidv 3198 | . . . . . . 7 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
| 14 | 7, 13 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
| 15 | efgredlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
| 16 | efgredlem.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
| 17 | 8 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑆‘𝐴)) |
| 18 | efgredlem.5 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
| 19 | eqcom 2740 | . . . . . 6 ⊢ ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0)) | |
| 20 | 18, 19 | sylnib 328 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘0) = (𝐴‘0)) |
| 21 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
| 22 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
| 23 | efgredlemb.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) | |
| 24 | efgredlemb.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) | |
| 25 | efgredlemb.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) | |
| 26 | efgredlemb.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) | |
| 27 | efgredlemb.7 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) | |
| 28 | efgredlemb.6 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) | |
| 29 | efgredlemb.8 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) | |
| 30 | eqcom 2740 | . . . . . 6 ⊢ ((𝐴‘𝐾) = (𝐵‘𝐿) ↔ (𝐵‘𝐿) = (𝐴‘𝐾)) | |
| 31 | 29, 30 | sylnib 328 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘𝐿) = (𝐴‘𝐾)) |
| 32 | 1, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31 | efgredlemc 19667 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐵‘0) = (𝐴‘0))) |
| 33 | 32, 19 | imbitrrdi 252 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐴‘0) = (𝐵‘0))) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29 | efgredlemc 19667 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) |
| 35 | 24 | elfzelzd 13435 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 23 | elfzelzd 13435 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 37 | uztric 12766 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) | |
| 38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) |
| 39 | 33, 34, 38 | mpjaod 860 | . 2 ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) |
| 40 | 39, 18 | pm2.65i 194 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3049 {crab 3397 ∖ cdif 3896 ∅c0 4284 {csn 4577 〈cop 4583 〈cotp 4585 ∪ ciun 4943 class class class wbr 5095 ↦ cmpt 5176 I cid 5515 × cxp 5619 dom cdm 5621 ran crn 5622 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1oc1o 8387 2oc2o 8388 0cc0 11016 1c1 11017 < clt 11156 − cmin 11354 ℤcz 12478 ℤ≥cuz 12742 ...cfz 13417 ..^cfzo 13564 ♯chash 14247 Word cword 14430 splice csplice 14666 〈“cs2 14758 ~FG cefg 19628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-n0 12392 df-xnn0 12465 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-hash 14248 df-word 14431 df-concat 14488 df-s1 14514 df-substr 14559 df-pfx 14589 df-splice 14667 df-s2 14765 |
| This theorem is referenced by: efgredlem 19669 |
| Copyright terms: Public domain | W3C validator |