![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemb | Structured version Visualization version GIF version |
Description: The reduced word that forms the base of the sequence in efgsval 19593 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | β’ π = ( I βWord (πΌ Γ 2o)) |
efgval.r | β’ βΌ = ( ~FG βπΌ) |
efgval2.m | β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
efgval2.t | β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
efgred.d | β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) |
efgred.s | β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
efgredlem.1 | β’ (π β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
efgredlem.2 | β’ (π β π΄ β dom π) |
efgredlem.3 | β’ (π β π΅ β dom π) |
efgredlem.4 | β’ (π β (πβπ΄) = (πβπ΅)) |
efgredlem.5 | β’ (π β Β¬ (π΄β0) = (π΅β0)) |
efgredlemb.k | β’ πΎ = (((β―βπ΄) β 1) β 1) |
efgredlemb.l | β’ πΏ = (((β―βπ΅) β 1) β 1) |
efgredlemb.p | β’ (π β π β (0...(β―β(π΄βπΎ)))) |
efgredlemb.q | β’ (π β π β (0...(β―β(π΅βπΏ)))) |
efgredlemb.u | β’ (π β π β (πΌ Γ 2o)) |
efgredlemb.v | β’ (π β π β (πΌ Γ 2o)) |
efgredlemb.6 | β’ (π β (πβπ΄) = (π(πβ(π΄βπΎ))π)) |
efgredlemb.7 | β’ (π β (πβπ΅) = (π(πβ(π΅βπΏ))π)) |
efgredlemb.8 | β’ (π β Β¬ (π΄βπΎ) = (π΅βπΏ)) |
Ref | Expression |
---|---|
efgredlemb | β’ Β¬ π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . 5 β’ π = ( I βWord (πΌ Γ 2o)) | |
2 | efgval.r | . . . . 5 β’ βΌ = ( ~FG βπΌ) | |
3 | efgval2.m | . . . . 5 β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) | |
4 | efgval2.t | . . . . 5 β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) | |
5 | efgred.d | . . . . 5 β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) | |
6 | efgred.s | . . . . 5 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) | |
7 | efgredlem.1 | . . . . . 6 β’ (π β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) | |
8 | efgredlem.4 | . . . . . . 7 β’ (π β (πβπ΄) = (πβπ΅)) | |
9 | fveq2 6888 | . . . . . . . . . 10 β’ ((πβπ΄) = (πβπ΅) β (β―β(πβπ΄)) = (β―β(πβπ΅))) | |
10 | 9 | breq2d 5159 | . . . . . . . . 9 β’ ((πβπ΄) = (πβπ΅) β ((β―β(πβπ)) < (β―β(πβπ΄)) β (β―β(πβπ)) < (β―β(πβπ΅)))) |
11 | 10 | imbi1d 341 | . . . . . . . 8 β’ ((πβπ΄) = (πβπ΅) β (((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β ((β―β(πβπ)) < (β―β(πβπ΅)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
12 | 11 | 2ralbidv 3218 | . . . . . . 7 β’ ((πβπ΄) = (πβπ΅) β (βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΅)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
13 | 8, 12 | syl 17 | . . . . . 6 β’ (π β (βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΄)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))) β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΅)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0))))) |
14 | 7, 13 | mpbid 231 | . . . . 5 β’ (π β βπ β dom πβπ β dom π((β―β(πβπ)) < (β―β(πβπ΅)) β ((πβπ) = (πβπ) β (πβ0) = (πβ0)))) |
15 | efgredlem.3 | . . . . 5 β’ (π β π΅ β dom π) | |
16 | efgredlem.2 | . . . . 5 β’ (π β π΄ β dom π) | |
17 | 8 | eqcomd 2738 | . . . . 5 β’ (π β (πβπ΅) = (πβπ΄)) |
18 | efgredlem.5 | . . . . . 6 β’ (π β Β¬ (π΄β0) = (π΅β0)) | |
19 | eqcom 2739 | . . . . . 6 β’ ((π΄β0) = (π΅β0) β (π΅β0) = (π΄β0)) | |
20 | 18, 19 | sylnib 327 | . . . . 5 β’ (π β Β¬ (π΅β0) = (π΄β0)) |
21 | efgredlemb.l | . . . . 5 β’ πΏ = (((β―βπ΅) β 1) β 1) | |
22 | efgredlemb.k | . . . . 5 β’ πΎ = (((β―βπ΄) β 1) β 1) | |
23 | efgredlemb.q | . . . . 5 β’ (π β π β (0...(β―β(π΅βπΏ)))) | |
24 | efgredlemb.p | . . . . 5 β’ (π β π β (0...(β―β(π΄βπΎ)))) | |
25 | efgredlemb.v | . . . . 5 β’ (π β π β (πΌ Γ 2o)) | |
26 | efgredlemb.u | . . . . 5 β’ (π β π β (πΌ Γ 2o)) | |
27 | efgredlemb.7 | . . . . 5 β’ (π β (πβπ΅) = (π(πβ(π΅βπΏ))π)) | |
28 | efgredlemb.6 | . . . . 5 β’ (π β (πβπ΄) = (π(πβ(π΄βπΎ))π)) | |
29 | efgredlemb.8 | . . . . . 6 β’ (π β Β¬ (π΄βπΎ) = (π΅βπΏ)) | |
30 | eqcom 2739 | . . . . . 6 β’ ((π΄βπΎ) = (π΅βπΏ) β (π΅βπΏ) = (π΄βπΎ)) | |
31 | 29, 30 | sylnib 327 | . . . . 5 β’ (π β Β¬ (π΅βπΏ) = (π΄βπΎ)) |
32 | 1, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31 | efgredlemc 19607 | . . . 4 β’ (π β (π β (β€β₯βπ) β (π΅β0) = (π΄β0))) |
33 | 32, 19 | syl6ibr 251 | . . 3 β’ (π β (π β (β€β₯βπ) β (π΄β0) = (π΅β0))) |
34 | 1, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29 | efgredlemc 19607 | . . 3 β’ (π β (π β (β€β₯βπ) β (π΄β0) = (π΅β0))) |
35 | 24 | elfzelzd 13498 | . . . 4 β’ (π β π β β€) |
36 | 23 | elfzelzd 13498 | . . . 4 β’ (π β π β β€) |
37 | uztric 12842 | . . . 4 β’ ((π β β€ β§ π β β€) β (π β (β€β₯βπ) β¨ π β (β€β₯βπ))) | |
38 | 35, 36, 37 | syl2anc 584 | . . 3 β’ (π β (π β (β€β₯βπ) β¨ π β (β€β₯βπ))) |
39 | 33, 34, 38 | mpjaod 858 | . 2 β’ (π β (π΄β0) = (π΅β0)) |
40 | 39, 18 | pm2.65i 193 | 1 β’ Β¬ π |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β cdif 3944 β c0 4321 {csn 4627 β¨cop 4633 β¨cotp 4635 βͺ ciun 4996 class class class wbr 5147 β¦ cmpt 5230 I cid 5572 Γ cxp 5673 dom cdm 5675 ran crn 5676 βcfv 6540 (class class class)co 7405 β cmpo 7407 1oc1o 8455 2oc2o 8456 0cc0 11106 1c1 11107 < clt 11244 β cmin 11440 β€cz 12554 β€β₯cuz 12818 ...cfz 13480 ..^cfzo 13623 β―chash 14286 Word cword 14460 splice csplice 14695 β¨βcs2 14788 ~FG cefg 19568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-splice 14696 df-s2 14795 |
This theorem is referenced by: efgredlem 19609 |
Copyright terms: Public domain | W3C validator |