MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemb Structured version   Visualization version   GIF version

Theorem efgredlemb 19668
Description: The reduced word that forms the base of the sequence in efgsval 19653 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
efgredlemb.8 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
Assertion
Ref Expression
efgredlemb ¬ 𝜑
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemb
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
7 efgredlem.1 . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
8 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
9 fveq2 6831 . . . . . . . . . 10 ((𝑆𝐴) = (𝑆𝐵) → (♯‘(𝑆𝐴)) = (♯‘(𝑆𝐵)))
109breq2d 5107 . . . . . . . . 9 ((𝑆𝐴) = (𝑆𝐵) → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) ↔ (♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵))))
1110imbi1d 341 . . . . . . . 8 ((𝑆𝐴) = (𝑆𝐵) → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
12112ralbidv 3198 . . . . . . 7 ((𝑆𝐴) = (𝑆𝐵) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
138, 12syl 17 . . . . . 6 (𝜑 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
147, 13mpbid 232 . . . . 5 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
15 efgredlem.3 . . . . 5 (𝜑𝐵 ∈ dom 𝑆)
16 efgredlem.2 . . . . 5 (𝜑𝐴 ∈ dom 𝑆)
178eqcomd 2739 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑆𝐴))
18 efgredlem.5 . . . . . 6 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
19 eqcom 2740 . . . . . 6 ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0))
2018, 19sylnib 328 . . . . 5 (𝜑 → ¬ (𝐵‘0) = (𝐴‘0))
21 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
22 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
23 efgredlemb.q . . . . 5 (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
24 efgredlemb.p . . . . 5 (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
25 efgredlemb.v . . . . 5 (𝜑𝑉 ∈ (𝐼 × 2o))
26 efgredlemb.u . . . . 5 (𝜑𝑈 ∈ (𝐼 × 2o))
27 efgredlemb.7 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
28 efgredlemb.6 . . . . 5 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
29 efgredlemb.8 . . . . . 6 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
30 eqcom 2740 . . . . . 6 ((𝐴𝐾) = (𝐵𝐿) ↔ (𝐵𝐿) = (𝐴𝐾))
3129, 30sylnib 328 . . . . 5 (𝜑 → ¬ (𝐵𝐿) = (𝐴𝐾))
321, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31efgredlemc 19667 . . . 4 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐵‘0) = (𝐴‘0)))
3332, 19imbitrrdi 252 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐴‘0) = (𝐵‘0)))
341, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29efgredlemc 19667 . . 3 (𝜑 → (𝑃 ∈ (ℤ𝑄) → (𝐴‘0) = (𝐵‘0)))
3524elfzelzd 13435 . . . 4 (𝜑𝑃 ∈ ℤ)
3623elfzelzd 13435 . . . 4 (𝜑𝑄 ∈ ℤ)
37 uztric 12766 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
3835, 36, 37syl2anc 584 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
3933, 34, 38mpjaod 860 . 2 (𝜑 → (𝐴‘0) = (𝐵‘0))
4039, 18pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3049  {crab 3397  cdif 3896  c0 4284  {csn 4577  cop 4583  cotp 4585   ciun 4943   class class class wbr 5095  cmpt 5176   I cid 5515   × cxp 5619  dom cdm 5621  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357  1oc1o 8387  2oc2o 8388  0cc0 11016  1c1 11017   < clt 11156  cmin 11354  cz 12478  cuz 12742  ...cfz 13417  ..^cfzo 13564  chash 14247  Word cword 14430   splice csplice 14666  ⟨“cs2 14758   ~FG cefg 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fzo 13565  df-hash 14248  df-word 14431  df-concat 14488  df-s1 14514  df-substr 14559  df-pfx 14589  df-splice 14667  df-s2 14765
This theorem is referenced by:  efgredlem  19669
  Copyright terms: Public domain W3C validator