![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgredlemb | Structured version Visualization version GIF version |
Description: The reduced word that forms the base of the sequence in efgsval 19513 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
efgredlem.1 | ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
efgredlem.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) |
efgredlem.3 | ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) |
efgredlem.4 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) |
efgredlem.5 | ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) |
efgredlemb.k | ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) |
efgredlemb.l | ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) |
efgredlemb.p | ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) |
efgredlemb.q | ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) |
efgredlemb.u | ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) |
efgredlemb.v | ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) |
efgredlemb.6 | ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) |
efgredlemb.7 | ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) |
efgredlemb.8 | ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) |
Ref | Expression |
---|---|
efgredlemb | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . 5 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
2 | efgval.r | . . . . 5 ⊢ ∼ = ( ~FG ‘𝐼) | |
3 | efgval2.m | . . . . 5 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | |
4 | efgval2.t | . . . . 5 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
5 | efgred.d | . . . . 5 ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | |
6 | efgred.s | . . . . 5 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
7 | efgredlem.1 | . . . . . 6 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) | |
8 | efgredlem.4 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑆‘𝐵)) | |
9 | fveq2 6842 | . . . . . . . . . 10 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (♯‘(𝑆‘𝐴)) = (♯‘(𝑆‘𝐵))) | |
10 | 9 | breq2d 5117 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) ↔ (♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)))) |
11 | 10 | imbi1d 341 | . . . . . . . 8 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
12 | 11 | 2ralbidv 3212 | . . . . . . 7 ⊢ ((𝑆‘𝐴) = (𝑆‘𝐵) → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐴)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0))))) |
14 | 7, 13 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ∀𝑎 ∈ dom 𝑆∀𝑏 ∈ dom 𝑆((♯‘(𝑆‘𝑎)) < (♯‘(𝑆‘𝐵)) → ((𝑆‘𝑎) = (𝑆‘𝑏) → (𝑎‘0) = (𝑏‘0)))) |
15 | efgredlem.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ dom 𝑆) | |
16 | efgredlem.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑆) | |
17 | 8 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑆‘𝐴)) |
18 | efgredlem.5 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘0) = (𝐵‘0)) | |
19 | eqcom 2743 | . . . . . 6 ⊢ ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0)) | |
20 | 18, 19 | sylnib 327 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘0) = (𝐴‘0)) |
21 | efgredlemb.l | . . . . 5 ⊢ 𝐿 = (((♯‘𝐵) − 1) − 1) | |
22 | efgredlemb.k | . . . . 5 ⊢ 𝐾 = (((♯‘𝐴) − 1) − 1) | |
23 | efgredlemb.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (0...(♯‘(𝐵‘𝐿)))) | |
24 | efgredlemb.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘(𝐴‘𝐾)))) | |
25 | efgredlemb.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ (𝐼 × 2o)) | |
26 | efgredlemb.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (𝐼 × 2o)) | |
27 | efgredlemb.7 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐵) = (𝑄(𝑇‘(𝐵‘𝐿))𝑉)) | |
28 | efgredlemb.6 | . . . . 5 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑃(𝑇‘(𝐴‘𝐾))𝑈)) | |
29 | efgredlemb.8 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐴‘𝐾) = (𝐵‘𝐿)) | |
30 | eqcom 2743 | . . . . . 6 ⊢ ((𝐴‘𝐾) = (𝐵‘𝐿) ↔ (𝐵‘𝐿) = (𝐴‘𝐾)) | |
31 | 29, 30 | sylnib 327 | . . . . 5 ⊢ (𝜑 → ¬ (𝐵‘𝐿) = (𝐴‘𝐾)) |
32 | 1, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31 | efgredlemc 19527 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐵‘0) = (𝐴‘0))) |
33 | 32, 19 | syl6ibr 251 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) → (𝐴‘0) = (𝐵‘0))) |
34 | 1, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29 | efgredlemc 19527 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘𝑄) → (𝐴‘0) = (𝐵‘0))) |
35 | 24 | elfzelzd 13442 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
36 | 23 | elfzelzd 13442 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℤ) |
37 | uztric 12787 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) | |
38 | 35, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑄 ∈ (ℤ≥‘𝑃) ∨ 𝑃 ∈ (ℤ≥‘𝑄))) |
39 | 33, 34, 38 | mpjaod 858 | . 2 ⊢ (𝜑 → (𝐴‘0) = (𝐵‘0)) |
40 | 39, 18 | pm2.65i 193 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3064 {crab 3407 ∖ cdif 3907 ∅c0 4282 {csn 4586 〈cop 4592 〈cotp 4594 ∪ ciun 4954 class class class wbr 5105 ↦ cmpt 5188 I cid 5530 × cxp 5631 dom cdm 5633 ran crn 5634 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 1oc1o 8405 2oc2o 8406 0cc0 11051 1c1 11052 < clt 11189 − cmin 11385 ℤcz 12499 ℤ≥cuz 12763 ...cfz 13424 ..^cfzo 13567 ♯chash 14230 Word cword 14402 splice csplice 14637 〈“cs2 14730 ~FG cefg 19488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-xnn0 12486 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-s2 14737 |
This theorem is referenced by: efgredlem 19529 |
Copyright terms: Public domain | W3C validator |