MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemb Structured version   Visualization version   GIF version

Theorem efgredlemb 18864
Description: The reduced word that forms the base of the sequence in efgsval 18849 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((♯‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((♯‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2o))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2o))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
efgredlemb.8 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
Assertion
Ref Expression
efgredlemb ¬ 𝜑
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemb
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
7 efgredlem.1 . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
8 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
9 fveq2 6645 . . . . . . . . . 10 ((𝑆𝐴) = (𝑆𝐵) → (♯‘(𝑆𝐴)) = (♯‘(𝑆𝐵)))
109breq2d 5042 . . . . . . . . 9 ((𝑆𝐴) = (𝑆𝐵) → ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) ↔ (♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵))))
1110imbi1d 345 . . . . . . . 8 ((𝑆𝐴) = (𝑆𝐵) → (((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
12112ralbidv 3164 . . . . . . 7 ((𝑆𝐴) = (𝑆𝐵) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
138, 12syl 17 . . . . . 6 (𝜑 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
147, 13mpbid 235 . . . . 5 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((♯‘(𝑆𝑎)) < (♯‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
15 efgredlem.3 . . . . 5 (𝜑𝐵 ∈ dom 𝑆)
16 efgredlem.2 . . . . 5 (𝜑𝐴 ∈ dom 𝑆)
178eqcomd 2804 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑆𝐴))
18 efgredlem.5 . . . . . 6 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
19 eqcom 2805 . . . . . 6 ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0))
2018, 19sylnib 331 . . . . 5 (𝜑 → ¬ (𝐵‘0) = (𝐴‘0))
21 efgredlemb.l . . . . 5 𝐿 = (((♯‘𝐵) − 1) − 1)
22 efgredlemb.k . . . . 5 𝐾 = (((♯‘𝐴) − 1) − 1)
23 efgredlemb.q . . . . 5 (𝜑𝑄 ∈ (0...(♯‘(𝐵𝐿))))
24 efgredlemb.p . . . . 5 (𝜑𝑃 ∈ (0...(♯‘(𝐴𝐾))))
25 efgredlemb.v . . . . 5 (𝜑𝑉 ∈ (𝐼 × 2o))
26 efgredlemb.u . . . . 5 (𝜑𝑈 ∈ (𝐼 × 2o))
27 efgredlemb.7 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
28 efgredlemb.6 . . . . 5 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
29 efgredlemb.8 . . . . . 6 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
30 eqcom 2805 . . . . . 6 ((𝐴𝐾) = (𝐵𝐿) ↔ (𝐵𝐿) = (𝐴𝐾))
3129, 30sylnib 331 . . . . 5 (𝜑 → ¬ (𝐵𝐿) = (𝐴𝐾))
321, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31efgredlemc 18863 . . . 4 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐵‘0) = (𝐴‘0)))
3332, 19syl6ibr 255 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐴‘0) = (𝐵‘0)))
341, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29efgredlemc 18863 . . 3 (𝜑 → (𝑃 ∈ (ℤ𝑄) → (𝐴‘0) = (𝐵‘0)))
35 elfzelz 12902 . . . . 5 (𝑃 ∈ (0...(♯‘(𝐴𝐾))) → 𝑃 ∈ ℤ)
3624, 35syl 17 . . . 4 (𝜑𝑃 ∈ ℤ)
37 elfzelz 12902 . . . . 5 (𝑄 ∈ (0...(♯‘(𝐵𝐿))) → 𝑄 ∈ ℤ)
3823, 37syl 17 . . . 4 (𝜑𝑄 ∈ ℤ)
39 uztric 12254 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
4036, 38, 39syl2anc 587 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
4133, 34, 40mpjaod 857 . 2 (𝜑 → (𝐴‘0) = (𝐵‘0))
4241, 18pm2.65i 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  {crab 3110  cdif 3878  c0 4243  {csn 4525  cop 4531  cotp 4533   ciun 4881   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  dom cdm 5519  ran crn 5520  cfv 6324  (class class class)co 7135  cmpo 7137  1oc1o 8078  2oc2o 8079  0cc0 10526  1c1 10527   < clt 10664  cmin 10859  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   splice csplice 14102  ⟨“cs2 14194   ~FG cefg 18824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-s2 14201
This theorem is referenced by:  efgredlem  18865
  Copyright terms: Public domain W3C validator