Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcocvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of prstcocval 46410 as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcoc.oc | ⊢ (𝜑 → ⊥ = (oc‘𝐾)) |
Ref | Expression |
---|---|
prstcocvalOLD | ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcoc.oc | . 2 ⊢ (𝜑 → ⊥ = (oc‘𝐾)) | |
2 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
3 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
4 | ocid 17137 | . . 3 ⊢ oc = Slot (oc‘ndx) | |
5 | 1nn0 12295 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 5, 5 | deccl 12498 | . . . . . 6 ⊢ ;11 ∈ ℕ0 |
7 | 6 | nn0rei 12290 | . . . . 5 ⊢ ;11 ∈ ℝ |
8 | 5nn 12105 | . . . . . 6 ⊢ 5 ∈ ℕ | |
9 | 1lt5 12199 | . . . . . 6 ⊢ 1 < 5 | |
10 | 5, 5, 8, 9 | declt 12511 | . . . . 5 ⊢ ;11 < ;15 |
11 | 7, 10 | ltneii 11134 | . . . 4 ⊢ ;11 ≠ ;15 |
12 | ocndx 17136 | . . . . 5 ⊢ (oc‘ndx) = ;11 | |
13 | ccondx 17168 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
14 | 12, 13 | neeq12i 3008 | . . . 4 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ↔ ;11 ≠ ;15) |
15 | 11, 14 | mpbir 230 | . . 3 ⊢ (oc‘ndx) ≠ (comp‘ndx) |
16 | 4nn 12102 | . . . . . 6 ⊢ 4 ∈ ℕ | |
17 | 1lt4 12195 | . . . . . 6 ⊢ 1 < 4 | |
18 | 5, 5, 16, 17 | declt 12511 | . . . . 5 ⊢ ;11 < ;14 |
19 | 7, 18 | ltneii 11134 | . . . 4 ⊢ ;11 ≠ ;14 |
20 | homndx 17166 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
21 | 12, 20 | neeq12i 3008 | . . . 4 ⊢ ((oc‘ndx) ≠ (Hom ‘ndx) ↔ ;11 ≠ ;14) |
22 | 19, 21 | mpbir 230 | . . 3 ⊢ (oc‘ndx) ≠ (Hom ‘ndx) |
23 | 2, 3, 4, 15, 22 | prstcnid 46405 | . 2 ⊢ (𝜑 → (oc‘𝐾) = (oc‘𝐶)) |
24 | 1, 23 | eqtrd 2776 | 1 ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ‘cfv 6458 1c1 10918 4c4 12076 5c5 12077 ;cdc 12483 ndxcnx 16939 occoc 17015 Hom chom 17018 compcco 17019 Proset cproset 18056 ProsetToCatcprstc 46401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-dec 12484 df-sets 16910 df-slot 16928 df-ndx 16940 df-ocomp 17028 df-hom 17031 df-cco 17032 df-prstc 46402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |