Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstcocvalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of prstcocval 46313 as of 12-Nov-2024. Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcoc.oc | ⊢ (𝜑 → ⊥ = (oc‘𝐾)) |
Ref | Expression |
---|---|
prstcocvalOLD | ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcoc.oc | . 2 ⊢ (𝜑 → ⊥ = (oc‘𝐾)) | |
2 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
3 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
4 | ocid 17082 | . . 3 ⊢ oc = Slot (oc‘ndx) | |
5 | 1nn0 12241 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
6 | 5, 5 | deccl 12443 | . . . . . 6 ⊢ ;11 ∈ ℕ0 |
7 | 6 | nn0rei 12236 | . . . . 5 ⊢ ;11 ∈ ℝ |
8 | 5nn 12051 | . . . . . 6 ⊢ 5 ∈ ℕ | |
9 | 1lt5 12145 | . . . . . 6 ⊢ 1 < 5 | |
10 | 5, 5, 8, 9 | declt 12456 | . . . . 5 ⊢ ;11 < ;15 |
11 | 7, 10 | ltneii 11080 | . . . 4 ⊢ ;11 ≠ ;15 |
12 | ocndx 17081 | . . . . 5 ⊢ (oc‘ndx) = ;11 | |
13 | ccondx 17113 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
14 | 12, 13 | neeq12i 3012 | . . . 4 ⊢ ((oc‘ndx) ≠ (comp‘ndx) ↔ ;11 ≠ ;15) |
15 | 11, 14 | mpbir 230 | . . 3 ⊢ (oc‘ndx) ≠ (comp‘ndx) |
16 | 4nn 12048 | . . . . . 6 ⊢ 4 ∈ ℕ | |
17 | 1lt4 12141 | . . . . . 6 ⊢ 1 < 4 | |
18 | 5, 5, 16, 17 | declt 12456 | . . . . 5 ⊢ ;11 < ;14 |
19 | 7, 18 | ltneii 11080 | . . . 4 ⊢ ;11 ≠ ;14 |
20 | homndx 17111 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
21 | 12, 20 | neeq12i 3012 | . . . 4 ⊢ ((oc‘ndx) ≠ (Hom ‘ndx) ↔ ;11 ≠ ;14) |
22 | 19, 21 | mpbir 230 | . . 3 ⊢ (oc‘ndx) ≠ (Hom ‘ndx) |
23 | 2, 3, 4, 15, 22 | prstcnid 46308 | . 2 ⊢ (𝜑 → (oc‘𝐾) = (oc‘𝐶)) |
24 | 1, 23 | eqtrd 2780 | 1 ⊢ (𝜑 → ⊥ = (oc‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6431 1c1 10865 4c4 12022 5c5 12023 ;cdc 12428 ndxcnx 16884 occoc 16960 Hom chom 16963 compcco 16964 Proset cproset 18001 ProsetToCatcprstc 46304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-dec 12429 df-sets 16855 df-slot 16873 df-ndx 16885 df-ocomp 16973 df-hom 16976 df-cco 16977 df-prstc 46305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |