![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prstclevalOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of prstcleval 48735 as of 12-Nov-2024. Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prstcnid.c | ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) |
prstcnid.k | ⊢ (𝜑 → 𝐾 ∈ Proset ) |
prstcle.l | ⊢ (𝜑 → ≤ = (le‘𝐾)) |
Ref | Expression |
---|---|
prstclevalOLD | ⊢ (𝜑 → ≤ = (le‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prstcle.l | . 2 ⊢ (𝜑 → ≤ = (le‘𝐾)) | |
2 | prstcnid.c | . . 3 ⊢ (𝜑 → 𝐶 = (ProsetToCat‘𝐾)) | |
3 | prstcnid.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Proset ) | |
4 | pleid 17426 | . . 3 ⊢ le = Slot (le‘ndx) | |
5 | 10re 12777 | . . . . 5 ⊢ ;10 ∈ ℝ | |
6 | 1nn0 12569 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
7 | 0nn0 12568 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
8 | 5nn 12379 | . . . . . 6 ⊢ 5 ∈ ℕ | |
9 | 8 | nngt0i 12332 | . . . . . 6 ⊢ 0 < 5 |
10 | 6, 7, 8, 9 | declt 12786 | . . . . 5 ⊢ ;10 < ;15 |
11 | 5, 10 | ltneii 11403 | . . . 4 ⊢ ;10 ≠ ;15 |
12 | plendx 17425 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
13 | ccondx 17472 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
14 | 12, 13 | neeq12i 3013 | . . . 4 ⊢ ((le‘ndx) ≠ (comp‘ndx) ↔ ;10 ≠ ;15) |
15 | 11, 14 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (comp‘ndx) |
16 | 4nn 12376 | . . . . . 6 ⊢ 4 ∈ ℕ | |
17 | 16 | nngt0i 12332 | . . . . . 6 ⊢ 0 < 4 |
18 | 6, 7, 16, 17 | declt 12786 | . . . . 5 ⊢ ;10 < ;14 |
19 | 5, 18 | ltneii 11403 | . . . 4 ⊢ ;10 ≠ ;14 |
20 | homndx 17470 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
21 | 12, 20 | neeq12i 3013 | . . . 4 ⊢ ((le‘ndx) ≠ (Hom ‘ndx) ↔ ;10 ≠ ;14) |
22 | 19, 21 | mpbir 231 | . . 3 ⊢ (le‘ndx) ≠ (Hom ‘ndx) |
23 | 2, 3, 4, 15, 22 | prstcnid 48733 | . 2 ⊢ (𝜑 → (le‘𝐾) = (le‘𝐶)) |
24 | 1, 23 | eqtrd 2780 | 1 ⊢ (𝜑 → ≤ = (le‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 0cc0 11184 1c1 11185 4c4 12350 5c5 12351 ;cdc 12758 ndxcnx 17240 lecple 17318 Hom chom 17322 compcco 17323 Proset cproset 18363 ProsetToCatcprstc 48729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-ple 17331 df-hom 17335 df-cco 17336 df-prstc 48730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |