Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > poml6N | Structured version Visualization version GIF version |
Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
poml6.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
poml6.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
poml6N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
2 | simpl2 1190 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ∈ 𝐶) | |
3 | eqid 2739 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | poml6.c | . . . . 5 ⊢ 𝐶 = (PSubCl‘𝐾) | |
5 | 3, 4 | psubclssatN 37934 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
6 | 1, 2, 5 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ (Atoms‘𝐾)) |
7 | simpl3 1191 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ∈ 𝐶) | |
8 | 3, 4 | psubclssatN 37934 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
9 | 1, 7, 8 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ (Atoms‘𝐾)) |
10 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
11 | poml6.p | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
12 | 11, 4 | psubcli2N 37932 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
13 | 1, 7, 12 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
14 | 3, 11 | poml4N 37946 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) |
15 | 14 | imp 406 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
16 | 1, 6, 9, 10, 13, 15 | syl32anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
17 | 11, 4 | psubcli2N 37932 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
18 | 1, 2, 17 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
19 | 16, 18 | eqtrd 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 ‘cfv 6430 Atomscatm 37256 HLchlt 37343 ⊥𝑃cpolN 37895 PSubClcpscN 37927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-undef 8073 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-pmap 37497 df-polarityN 37896 df-psubclN 37928 |
This theorem is referenced by: osumcllem9N 37957 |
Copyright terms: Public domain | W3C validator |