Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > poml6N | Structured version Visualization version GIF version |
Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
poml6.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
poml6.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
poml6N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
2 | simpl2 1192 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ∈ 𝐶) | |
3 | eqid 2736 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | poml6.c | . . . . 5 ⊢ 𝐶 = (PSubCl‘𝐾) | |
5 | 3, 4 | psubclssatN 37997 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
6 | 1, 2, 5 | syl2anc 585 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ (Atoms‘𝐾)) |
7 | simpl3 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ∈ 𝐶) | |
8 | 3, 4 | psubclssatN 37997 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
9 | 1, 7, 8 | syl2anc 585 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ (Atoms‘𝐾)) |
10 | simpr 486 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
11 | poml6.p | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
12 | 11, 4 | psubcli2N 37995 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
13 | 1, 7, 12 | syl2anc 585 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
14 | 3, 11 | poml4N 38009 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) |
15 | 14 | imp 408 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
16 | 1, 6, 9, 10, 13, 15 | syl32anc 1378 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
17 | 11, 4 | psubcli2N 37995 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
18 | 1, 2, 17 | syl2anc 585 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
19 | 16, 18 | eqtrd 2776 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ⊆ wss 3892 ‘cfv 6458 Atomscatm 37319 HLchlt 37406 ⊥𝑃cpolN 37958 PSubClcpscN 37990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-riotaBAD 37009 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-undef 8120 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-p1 18189 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-pmap 37560 df-polarityN 37959 df-psubclN 37991 |
This theorem is referenced by: osumcllem9N 38020 |
Copyright terms: Public domain | W3C validator |