Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml6N Structured version   Visualization version   GIF version

Theorem poml6N 38011
Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml6.c 𝐶 = (PSubCl‘𝐾)
poml6.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml6N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)

Proof of Theorem poml6N
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
2 simpl2 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋𝐶)
3 eqid 2736 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 poml6.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 37997 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑌𝐶)
83, 4psubclssatN 37997 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑌 ⊆ (Atoms‘𝐾))
10 simpr 486 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋𝑌)
11 poml6.p . . . . 5 = (⊥𝑃𝐾)
1211, 4psubcli2N 37995 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
131, 7, 12syl2anc 585 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → ( ‘( 𝑌)) = 𝑌)
143, 11poml4N 38009 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
1514imp 408 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌)) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
161, 6, 9, 10, 13, 15syl32anc 1378 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
1711, 4psubcli2N 37995 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
181, 2, 17syl2anc 585 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → ( ‘( 𝑋)) = 𝑋)
1916, 18eqtrd 2776 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cin 3891  wss 3892  cfv 6458  Atomscatm 37319  HLchlt 37406  𝑃cpolN 37958  PSubClcpscN 37990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-riotaBAD 37009
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-undef 8120  df-proset 18058  df-poset 18076  df-plt 18093  df-lub 18109  df-glb 18110  df-join 18111  df-meet 18112  df-p0 18188  df-p1 18189  df-lat 18195  df-clat 18262  df-oposet 37232  df-ol 37234  df-oml 37235  df-covers 37322  df-ats 37323  df-atl 37354  df-cvlat 37378  df-hlat 37407  df-pmap 37560  df-polarityN 37959  df-psubclN 37991
This theorem is referenced by:  osumcllem9N  38020
  Copyright terms: Public domain W3C validator