Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml6N Structured version   Visualization version   GIF version

Theorem poml6N 36025
Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml6.c 𝐶 = (PSubCl‘𝐾)
poml6.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml6N (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)

Proof of Theorem poml6N
StepHypRef Expression
1 simpl1 1246 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
2 simpl2 1248 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋𝐶)
3 eqid 2825 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 poml6.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 36011 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1250 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑌𝐶)
83, 4psubclssatN 36011 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑌 ⊆ (Atoms‘𝐾))
10 simpr 479 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → 𝑋𝑌)
11 poml6.p . . . . 5 = (⊥𝑃𝐾)
1211, 4psubcli2N 36009 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
131, 7, 12syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → ( ‘( 𝑌)) = 𝑌)
143, 11poml4N 36023 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
1514imp 397 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌)) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
161, 6, 9, 10, 13, 15syl32anc 1501 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
1711, 4psubcli2N 36009 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
181, 2, 17syl2anc 579 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → ( ‘( 𝑋)) = 𝑋)
1916, 18eqtrd 2861 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  cin 3797  wss 3798  cfv 6127  Atomscatm 35333  HLchlt 35420  𝑃cpolN 35972  PSubClcpscN 36004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-riotaBAD 35023
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-undef 7669  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-pmap 35574  df-polarityN 35973  df-psubclN 36005
This theorem is referenced by:  osumcllem9N  36034
  Copyright terms: Public domain W3C validator