| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > poml6N | Structured version Visualization version GIF version | ||
| Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| poml6.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| poml6.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| poml6N | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝐾 ∈ HL) | |
| 2 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ∈ 𝐶) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 4 | poml6.c | . . . . 5 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 5 | 3, 4 | psubclssatN 39908 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | simpl3 1194 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ∈ 𝐶) | |
| 8 | 3, 4 | psubclssatN 39908 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 9 | 1, 7, 8 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 10 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → 𝑋 ⊆ 𝑌) | |
| 11 | poml6.p | . . . . 5 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 12 | 11, 4 | psubcli2N 39906 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 13 | 1, 7, 12 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 14 | 3, 11 | poml4N 39920 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) |
| 15 | 14 | imp 406 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) ∧ (𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 16 | 1, 6, 9, 10, 13, 15 | syl32anc 1380 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋))) |
| 17 | 11, 4 | psubcli2N 39906 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 18 | 1, 2, 17 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 19 | 16, 18 | eqtrd 2764 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 ‘cfv 6499 Atomscatm 39229 HLchlt 39316 ⊥𝑃cpolN 39869 PSubClcpscN 39901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-pmap 39471 df-polarityN 39870 df-psubclN 39902 |
| This theorem is referenced by: osumcllem9N 39931 |
| Copyright terms: Public domain | W3C validator |