Step | Hyp | Ref
| Expression |
1 | | simpl1 1192 |
. . 3
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β πΎ β HL) |
2 | | simpl2 1193 |
. . . 4
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β π β πΆ) |
3 | | eqid 2733 |
. . . . 5
β’
(AtomsβπΎ) =
(AtomsβπΎ) |
4 | | poml6.c |
. . . . 5
β’ πΆ = (PSubClβπΎ) |
5 | 3, 4 | psubclssatN 38801 |
. . . 4
β’ ((πΎ β HL β§ π β πΆ) β π β (AtomsβπΎ)) |
6 | 1, 2, 5 | syl2anc 585 |
. . 3
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β π β (AtomsβπΎ)) |
7 | | simpl3 1194 |
. . . 4
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β π β πΆ) |
8 | 3, 4 | psubclssatN 38801 |
. . . 4
β’ ((πΎ β HL β§ π β πΆ) β π β (AtomsβπΎ)) |
9 | 1, 7, 8 | syl2anc 585 |
. . 3
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β π β (AtomsβπΎ)) |
10 | | simpr 486 |
. . 3
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β π β π) |
11 | | poml6.p |
. . . . 5
β’ β₯ =
(β₯πβπΎ) |
12 | 11, 4 | psubcli2N 38799 |
. . . 4
β’ ((πΎ β HL β§ π β πΆ) β ( β₯ β( β₯
βπ)) = π) |
13 | 1, 7, 12 | syl2anc 585 |
. . 3
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β ( β₯ β( β₯
βπ)) = π) |
14 | 3, 11 | poml4N 38813 |
. . . 4
β’ ((πΎ β HL β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β ((π β π β§ ( β₯ β( β₯
βπ)) = π) β (( β₯ β(( β₯
βπ) β© π)) β© π) = ( β₯ β( β₯
βπ)))) |
15 | 14 | imp 408 |
. . 3
β’ (((πΎ β HL β§ π β (AtomsβπΎ) β§ π β (AtomsβπΎ)) β§ (π β π β§ ( β₯ β( β₯
βπ)) = π)) β (( β₯ β(( β₯
βπ) β© π)) β© π) = ( β₯ β( β₯
βπ))) |
16 | 1, 6, 9, 10, 13, 15 | syl32anc 1379 |
. 2
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β (( β₯ β(( β₯
βπ) β© π)) β© π) = ( β₯ β( β₯
βπ))) |
17 | 11, 4 | psubcli2N 38799 |
. . 3
β’ ((πΎ β HL β§ π β πΆ) β ( β₯ β( β₯
βπ)) = π) |
18 | 1, 2, 17 | syl2anc 585 |
. 2
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β ( β₯ β( β₯
βπ)) = π) |
19 | 16, 18 | eqtrd 2773 |
1
β’ (((πΎ β HL β§ π β πΆ β§ π β πΆ) β§ π β π) β (( β₯ β(( β₯
βπ) β© π)) β© π) = π) |