Proof of Theorem pmapojoinN
Step | Hyp | Ref
| Expression |
1 | | pmapojoin.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | pmapojoin.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
3 | | pmapojoin.m |
. . . 4
⊢ 𝑀 = (pmap‘𝐾) |
4 | | pmapojoin.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
5 | | eqid 2738 |
. . . 4
⊢
(⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) |
6 | 1, 2, 3, 4, 5 | pmapj2N 37870 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) =
((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((𝑀‘𝑋) + (𝑀‘𝑌))))) |
7 | 6 | adantr 480 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘(𝑋 ∨ 𝑌)) =
((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((𝑀‘𝑋) + (𝑀‘𝑌))))) |
8 | | simpl1 1189 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) |
9 | | simpl2 1190 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → 𝑋 ∈ 𝐵) |
10 | | eqid 2738 |
. . . . . 6
⊢
(PSubCl‘𝐾) =
(PSubCl‘𝐾) |
11 | 1, 3, 10 | pmapsubclN 37887 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ (PSubCl‘𝐾)) |
12 | 8, 9, 11 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘𝑋) ∈ (PSubCl‘𝐾)) |
13 | | simpl3 1191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → 𝑌 ∈ 𝐵) |
14 | 1, 3, 10 | pmapsubclN 37887 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) → (𝑀‘𝑌) ∈ (PSubCl‘𝐾)) |
15 | 8, 13, 14 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘𝑌) ∈ (PSubCl‘𝐾)) |
16 | | hlop 37303 |
. . . . . . . . 9
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) |
17 | 16 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
18 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
19 | | pmapojoin.o |
. . . . . . . . 9
⊢ ⊥ =
(oc‘𝐾) |
20 | 1, 19 | opoccl 37135 |
. . . . . . . 8
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
21 | 17, 18, 20 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
22 | | pmapojoin.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
23 | 1, 22, 3 | pmaple 37702 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ≤ ( ⊥ ‘𝑌) ↔ (𝑀‘𝑋) ⊆ (𝑀‘( ⊥ ‘𝑌)))) |
24 | 21, 23 | syld3an3 1407 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ ( ⊥ ‘𝑌) ↔ (𝑀‘𝑋) ⊆ (𝑀‘( ⊥ ‘𝑌)))) |
25 | 24 | biimpa 476 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘𝑋) ⊆ (𝑀‘( ⊥ ‘𝑌))) |
26 | 1, 19, 3, 5 | polpmapN 37853 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵) →
((⊥𝑃‘𝐾)‘(𝑀‘𝑌)) = (𝑀‘( ⊥ ‘𝑌))) |
27 | 8, 13, 26 | syl2anc 583 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) →
((⊥𝑃‘𝐾)‘(𝑀‘𝑌)) = (𝑀‘( ⊥ ‘𝑌))) |
28 | 25, 27 | sseqtrrd 3958 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘𝑋) ⊆
((⊥𝑃‘𝐾)‘(𝑀‘𝑌))) |
29 | 4, 5, 10 | osumclN 37908 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑀‘𝑋) ∈ (PSubCl‘𝐾) ∧ (𝑀‘𝑌) ∈ (PSubCl‘𝐾)) ∧ (𝑀‘𝑋) ⊆
((⊥𝑃‘𝐾)‘(𝑀‘𝑌))) → ((𝑀‘𝑋) + (𝑀‘𝑌)) ∈ (PSubCl‘𝐾)) |
30 | 8, 12, 15, 28, 29 | syl31anc 1371 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → ((𝑀‘𝑋) + (𝑀‘𝑌)) ∈ (PSubCl‘𝐾)) |
31 | 5, 10 | psubcli2N 37880 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑀‘𝑋) + (𝑀‘𝑌)) ∈ (PSubCl‘𝐾)) →
((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((𝑀‘𝑋) + (𝑀‘𝑌)))) = ((𝑀‘𝑋) + (𝑀‘𝑌))) |
32 | 8, 30, 31 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) →
((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘((𝑀‘𝑋) + (𝑀‘𝑌)))) = ((𝑀‘𝑋) + (𝑀‘𝑌))) |
33 | 7, 32 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ ( ⊥ ‘𝑌)) → (𝑀‘(𝑋 ∨ 𝑌)) = ((𝑀‘𝑋) + (𝑀‘𝑌))) |