Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapojoinN Structured version   Visualization version   GIF version

Theorem pmapojoinN 37119
Description: For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 37003 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapojoin.b 𝐵 = (Base‘𝐾)
pmapojoin.l = (le‘𝐾)
pmapojoin.j = (join‘𝐾)
pmapojoin.m 𝑀 = (pmap‘𝐾)
pmapojoin.o = (oc‘𝐾)
pmapojoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapojoinN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) + (𝑀𝑌)))

Proof of Theorem pmapojoinN
StepHypRef Expression
1 pmapojoin.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapojoin.j . . . 4 = (join‘𝐾)
3 pmapojoin.m . . . 4 𝑀 = (pmap‘𝐾)
4 pmapojoin.p . . . 4 + = (+𝑃𝐾)
5 eqid 2821 . . . 4 (⊥𝑃𝐾) = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 37080 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))))
76adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))))
8 simpl1 1187 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝐾 ∈ HL)
9 simpl2 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝑋𝐵)
10 eqid 2821 . . . . . 6 (PSubCl‘𝐾) = (PSubCl‘𝐾)
111, 3, 10pmapsubclN 37097 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ (PSubCl‘𝐾))
128, 9, 11syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ∈ (PSubCl‘𝐾))
13 simpl3 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝑌𝐵)
141, 3, 10pmapsubclN 37097 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) ∈ (PSubCl‘𝐾))
158, 13, 14syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑌) ∈ (PSubCl‘𝐾))
16 hlop 36513 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
17163ad2ant1 1129 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
18 simp3 1134 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
19 pmapojoin.o . . . . . . . . 9 = (oc‘𝐾)
201, 19opoccl 36345 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
2117, 18, 20syl2anc 586 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
22 pmapojoin.l . . . . . . . 8 = (le‘𝐾)
231, 22, 3pmaple 36912 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌) ↔ (𝑀𝑋) ⊆ (𝑀‘( 𝑌))))
2421, 23syld3an3 1405 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌) ↔ (𝑀𝑋) ⊆ (𝑀‘( 𝑌))))
2524biimpa 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ⊆ (𝑀‘( 𝑌)))
261, 19, 3, 5polpmapN 37063 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → ((⊥𝑃𝐾)‘(𝑀𝑌)) = (𝑀‘( 𝑌)))
278, 13, 26syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((⊥𝑃𝐾)‘(𝑀𝑌)) = (𝑀‘( 𝑌)))
2825, 27sseqtrrd 4008 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ⊆ ((⊥𝑃𝐾)‘(𝑀𝑌)))
294, 5, 10osumclN 37118 . . . 4 (((𝐾 ∈ HL ∧ (𝑀𝑋) ∈ (PSubCl‘𝐾) ∧ (𝑀𝑌) ∈ (PSubCl‘𝐾)) ∧ (𝑀𝑋) ⊆ ((⊥𝑃𝐾)‘(𝑀𝑌))) → ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾))
308, 12, 15, 28, 29syl31anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾))
315, 10psubcli2N 37090 . . 3 ((𝐾 ∈ HL ∧ ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))) = ((𝑀𝑋) + (𝑀𝑌)))
328, 30, 31syl2anc 586 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))) = ((𝑀𝑋) + (𝑀𝑌)))
337, 32eqtrd 2856 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) + (𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  occoc 16573  joincjn 17554  OPcops 36323  HLchlt 36501  pmapcpmap 36648  +𝑃cpadd 36946  𝑃cpolN 37053  PSubClcpscN 37085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-undef 7939  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-polarityN 37054  df-psubclN 37086
This theorem is referenced by:  pl42lem1N  37130
  Copyright terms: Public domain W3C validator