Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapojoinN Structured version   Visualization version   GIF version

Theorem pmapojoinN 39143
Description: For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 39027 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapojoin.b 𝐡 = (Baseβ€˜πΎ)
pmapojoin.l ≀ = (leβ€˜πΎ)
pmapojoin.j ∨ = (joinβ€˜πΎ)
pmapojoin.m 𝑀 = (pmapβ€˜πΎ)
pmapojoin.o βŠ₯ = (ocβ€˜πΎ)
pmapojoin.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pmapojoinN (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜(𝑋 ∨ π‘Œ)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))

Proof of Theorem pmapojoinN
StepHypRef Expression
1 pmapojoin.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 pmapojoin.j . . . 4 ∨ = (joinβ€˜πΎ)
3 pmapojoin.m . . . 4 𝑀 = (pmapβ€˜πΎ)
4 pmapojoin.p . . . 4 + = (+π‘ƒβ€˜πΎ)
5 eqid 2731 . . . 4 (βŠ₯π‘ƒβ€˜πΎ) = (βŠ₯π‘ƒβ€˜πΎ)
61, 2, 3, 4, 5pmapj2N 39104 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (π‘€β€˜(𝑋 ∨ π‘Œ)) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))))
76adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜(𝑋 ∨ π‘Œ)) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))))
8 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ 𝐾 ∈ HL)
9 simpl2 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ 𝑋 ∈ 𝐡)
10 eqid 2731 . . . . . 6 (PSubClβ€˜πΎ) = (PSubClβ€˜πΎ)
111, 3, 10pmapsubclN 39121 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) ∈ (PSubClβ€˜πΎ))
128, 9, 11syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜π‘‹) ∈ (PSubClβ€˜πΎ))
13 simpl3 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ π‘Œ ∈ 𝐡)
141, 3, 10pmapsubclN 39121 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐡) β†’ (π‘€β€˜π‘Œ) ∈ (PSubClβ€˜πΎ))
158, 13, 14syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜π‘Œ) ∈ (PSubClβ€˜πΎ))
16 hlop 38536 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
17163ad2ant1 1132 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝐾 ∈ OP)
18 simp3 1137 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ∈ 𝐡)
19 pmapojoin.o . . . . . . . . 9 βŠ₯ = (ocβ€˜πΎ)
201, 19opoccl 38368 . . . . . . . 8 ((𝐾 ∈ OP ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡)
2117, 18, 20syl2anc 583 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡)
22 pmapojoin.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
231, 22, 3pmaple 38936 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ ( βŠ₯ β€˜π‘Œ) ∈ 𝐡) β†’ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ↔ (π‘€β€˜π‘‹) βŠ† (π‘€β€˜( βŠ₯ β€˜π‘Œ))))
2421, 23syld3an3 1408 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ≀ ( βŠ₯ β€˜π‘Œ) ↔ (π‘€β€˜π‘‹) βŠ† (π‘€β€˜( βŠ₯ β€˜π‘Œ))))
2524biimpa 476 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜π‘‹) βŠ† (π‘€β€˜( βŠ₯ β€˜π‘Œ)))
261, 19, 3, 5polpmapN 39087 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐡) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜π‘Œ)) = (π‘€β€˜( βŠ₯ β€˜π‘Œ)))
278, 13, 26syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜π‘Œ)) = (π‘€β€˜( βŠ₯ β€˜π‘Œ)))
2825, 27sseqtrrd 4024 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜π‘‹) βŠ† ((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜π‘Œ)))
294, 5, 10osumclN 39142 . . . 4 (((𝐾 ∈ HL ∧ (π‘€β€˜π‘‹) ∈ (PSubClβ€˜πΎ) ∧ (π‘€β€˜π‘Œ) ∈ (PSubClβ€˜πΎ)) ∧ (π‘€β€˜π‘‹) βŠ† ((βŠ₯π‘ƒβ€˜πΎ)β€˜(π‘€β€˜π‘Œ))) β†’ ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)) ∈ (PSubClβ€˜πΎ))
308, 12, 15, 28, 29syl31anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)) ∈ (PSubClβ€˜πΎ))
315, 10psubcli2N 39114 . . 3 ((𝐾 ∈ HL ∧ ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)) ∈ (PSubClβ€˜πΎ)) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))
328, 30, 31syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜((βŠ₯π‘ƒβ€˜πΎ)β€˜((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))
337, 32eqtrd 2771 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑋 ≀ ( βŠ₯ β€˜π‘Œ)) β†’ (π‘€β€˜(𝑋 ∨ π‘Œ)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   βŠ† wss 3949   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7412  Basecbs 17149  lecple 17209  occoc 17210  joincjn 18269  OPcops 38346  HLchlt 38524  pmapcpmap 38672  +𝑃cpadd 38970  βŠ₯𝑃cpolN 39077  PSubClcpscN 39109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-polarityN 39078  df-psubclN 39110
This theorem is referenced by:  pl42lem1N  39154
  Copyright terms: Public domain W3C validator