Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapojoinN Structured version   Visualization version   GIF version

Theorem pmapojoinN 37096
Description: For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin 36980 where only one direction holds. (Contributed by NM, 11-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapojoin.b 𝐵 = (Base‘𝐾)
pmapojoin.l = (le‘𝐾)
pmapojoin.j = (join‘𝐾)
pmapojoin.m 𝑀 = (pmap‘𝐾)
pmapojoin.o = (oc‘𝐾)
pmapojoin.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapojoinN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) + (𝑀𝑌)))

Proof of Theorem pmapojoinN
StepHypRef Expression
1 pmapojoin.b . . . 4 𝐵 = (Base‘𝐾)
2 pmapojoin.j . . . 4 = (join‘𝐾)
3 pmapojoin.m . . . 4 𝑀 = (pmap‘𝐾)
4 pmapojoin.p . . . 4 + = (+𝑃𝐾)
5 eqid 2819 . . . 4 (⊥𝑃𝐾) = (⊥𝑃𝐾)
61, 2, 3, 4, 5pmapj2N 37057 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))))
76adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))))
8 simpl1 1186 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝐾 ∈ HL)
9 simpl2 1187 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝑋𝐵)
10 eqid 2819 . . . . . 6 (PSubCl‘𝐾) = (PSubCl‘𝐾)
111, 3, 10pmapsubclN 37074 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ (PSubCl‘𝐾))
128, 9, 11syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ∈ (PSubCl‘𝐾))
13 simpl3 1188 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → 𝑌𝐵)
141, 3, 10pmapsubclN 37074 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵) → (𝑀𝑌) ∈ (PSubCl‘𝐾))
158, 13, 14syl2anc 586 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑌) ∈ (PSubCl‘𝐾))
16 hlop 36490 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ OP)
17163ad2ant1 1128 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
18 simp3 1133 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
19 pmapojoin.o . . . . . . . . 9 = (oc‘𝐾)
201, 19opoccl 36322 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
2117, 18, 20syl2anc 586 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
22 pmapojoin.l . . . . . . . 8 = (le‘𝐾)
231, 22, 3pmaple 36889 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌) ↔ (𝑀𝑋) ⊆ (𝑀‘( 𝑌))))
2421, 23syld3an3 1404 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌) ↔ (𝑀𝑋) ⊆ (𝑀‘( 𝑌))))
2524biimpa 479 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ⊆ (𝑀‘( 𝑌)))
261, 19, 3, 5polpmapN 37040 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐵) → ((⊥𝑃𝐾)‘(𝑀𝑌)) = (𝑀‘( 𝑌)))
278, 13, 26syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((⊥𝑃𝐾)‘(𝑀𝑌)) = (𝑀‘( 𝑌)))
2825, 27sseqtrrd 4006 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀𝑋) ⊆ ((⊥𝑃𝐾)‘(𝑀𝑌)))
294, 5, 10osumclN 37095 . . . 4 (((𝐾 ∈ HL ∧ (𝑀𝑋) ∈ (PSubCl‘𝐾) ∧ (𝑀𝑌) ∈ (PSubCl‘𝐾)) ∧ (𝑀𝑋) ⊆ ((⊥𝑃𝐾)‘(𝑀𝑌))) → ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾))
308, 12, 15, 28, 29syl31anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾))
315, 10psubcli2N 37067 . . 3 ((𝐾 ∈ HL ∧ ((𝑀𝑋) + (𝑀𝑌)) ∈ (PSubCl‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))) = ((𝑀𝑋) + (𝑀𝑌)))
328, 30, 31syl2anc 586 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘((𝑀𝑋) + (𝑀𝑌)))) = ((𝑀𝑋) + (𝑀𝑌)))
337, 32eqtrd 2854 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 ( 𝑌)) → (𝑀‘(𝑋 𝑌)) = ((𝑀𝑋) + (𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wss 3934   class class class wbr 5057  cfv 6348  (class class class)co 7148  Basecbs 16475  lecple 16564  occoc 16565  joincjn 17546  OPcops 36300  HLchlt 36478  pmapcpmap 36625  +𝑃cpadd 36923  𝑃cpolN 37030  PSubClcpscN 37062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36081
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-undef 7931  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-polarityN 37031  df-psubclN 37063
This theorem is referenced by:  pl42lem1N  37107
  Copyright terms: Public domain W3C validator