![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapidclN | Structured version Visualization version GIF version |
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapidcl.u | ⊢ 𝑈 = (lub‘𝐾) |
pmapidcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapidcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
pmapidclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pmapidcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
3 | 1, 2 | psubclssatN 39891 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
4 | pmapidcl.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
5 | pmapidcl.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | eqid 2740 | . . . 4 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
7 | 4, 1, 5, 6 | 2polvalN 39864 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
8 | 3, 7 | syldan 590 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
9 | 6, 2 | psubcli2N 39889 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋) |
10 | 8, 9 | eqtr3d 2782 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6568 lubclub 18373 Atomscatm 39212 HLchlt 39299 pmapcpmap 39447 ⊥𝑃cpolN 39852 PSubClcpscN 39884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-proset 18359 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-oposet 39125 df-ol 39127 df-oml 39128 df-covers 39215 df-ats 39216 df-atl 39247 df-cvlat 39271 df-hlat 39300 df-pmap 39454 df-polarityN 39853 df-psubclN 39885 |
This theorem is referenced by: psubclinN 39898 paddatclN 39899 |
Copyright terms: Public domain | W3C validator |