![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapidclN | Structured version Visualization version GIF version |
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapidcl.u | ⊢ 𝑈 = (lub‘𝐾) |
pmapidcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapidcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
pmapidclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pmapidcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
3 | 1, 2 | psubclssatN 39544 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
4 | pmapidcl.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
5 | pmapidcl.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | eqid 2725 | . . . 4 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
7 | 4, 1, 5, 6 | 2polvalN 39517 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
8 | 3, 7 | syldan 589 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
9 | 6, 2 | psubcli2N 39542 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋) |
10 | 8, 9 | eqtr3d 2767 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 ‘cfv 6549 lubclub 18304 Atomscatm 38865 HLchlt 38952 pmapcpmap 39100 ⊥𝑃cpolN 39505 PSubClcpscN 39537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-pmap 39107 df-polarityN 39506 df-psubclN 39538 |
This theorem is referenced by: psubclinN 39551 paddatclN 39552 |
Copyright terms: Public domain | W3C validator |