Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapidclN Structured version   Visualization version   GIF version

Theorem pmapidclN 39936
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapidcl.u 𝑈 = (lub‘𝐾)
pmapidcl.m 𝑀 = (pmap‘𝐾)
pmapidcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapidclN ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)

Proof of Theorem pmapidclN
StepHypRef Expression
1 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pmapidcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
31, 2psubclssatN 39935 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
4 pmapidcl.u . . . 4 𝑈 = (lub‘𝐾)
5 pmapidcl.m . . . 4 𝑀 = (pmap‘𝐾)
6 eqid 2729 . . . 4 (⊥𝑃𝐾) = (⊥𝑃𝐾)
74, 1, 5, 62polvalN 39908 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
83, 7syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
96, 2psubcli2N 39933 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
108, 9eqtr3d 2766 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  cfv 6511  lubclub 18270  Atomscatm 39256  HLchlt 39343  pmapcpmap 39491  𝑃cpolN 39896  PSubClcpscN 39928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-pmap 39498  df-polarityN 39897  df-psubclN 39929
This theorem is referenced by:  psubclinN  39942  paddatclN  39943
  Copyright terms: Public domain W3C validator