Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapidclN Structured version   Visualization version   GIF version

Theorem pmapidclN 39545
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapidcl.u 𝑈 = (lub‘𝐾)
pmapidcl.m 𝑀 = (pmap‘𝐾)
pmapidcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapidclN ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)

Proof of Theorem pmapidclN
StepHypRef Expression
1 eqid 2725 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pmapidcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
31, 2psubclssatN 39544 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
4 pmapidcl.u . . . 4 𝑈 = (lub‘𝐾)
5 pmapidcl.m . . . 4 𝑀 = (pmap‘𝐾)
6 eqid 2725 . . . 4 (⊥𝑃𝐾) = (⊥𝑃𝐾)
74, 1, 5, 62polvalN 39517 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
83, 7syldan 589 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
96, 2psubcli2N 39542 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
108, 9eqtr3d 2767 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3944  cfv 6549  lubclub 18304  Atomscatm 38865  HLchlt 38952  pmapcpmap 39100  𝑃cpolN 39505  PSubClcpscN 39537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-pmap 39107  df-polarityN 39506  df-psubclN 39538
This theorem is referenced by:  psubclinN  39551  paddatclN  39552
  Copyright terms: Public domain W3C validator