Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapidclN | Structured version Visualization version GIF version |
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pmapidcl.u | ⊢ 𝑈 = (lub‘𝐾) |
pmapidcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
pmapidcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
pmapidclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
2 | pmapidcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
3 | 1, 2 | psubclssatN 37943 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
4 | pmapidcl.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
5 | pmapidcl.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | eqid 2740 | . . . 4 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
7 | 4, 1, 5, 6 | 2polvalN 37916 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
8 | 3, 7 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
9 | 6, 2 | psubcli2N 37941 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋) |
10 | 8, 9 | eqtr3d 2782 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6431 lubclub 18017 Atomscatm 37265 HLchlt 37352 pmapcpmap 37499 ⊥𝑃cpolN 37904 PSubClcpscN 37936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-riotaBAD 36955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-undef 8074 df-proset 18003 df-poset 18021 df-plt 18038 df-lub 18054 df-glb 18055 df-join 18056 df-meet 18057 df-p0 18133 df-p1 18134 df-lat 18140 df-clat 18207 df-oposet 37178 df-ol 37180 df-oml 37181 df-covers 37268 df-ats 37269 df-atl 37300 df-cvlat 37324 df-hlat 37353 df-pmap 37506 df-polarityN 37905 df-psubclN 37937 |
This theorem is referenced by: psubclinN 37950 paddatclN 37951 |
Copyright terms: Public domain | W3C validator |