| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapidclN | Structured version Visualization version GIF version | ||
| Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pmapidcl.u | ⊢ 𝑈 = (lub‘𝐾) |
| pmapidcl.m | ⊢ 𝑀 = (pmap‘𝐾) |
| pmapidcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
| Ref | Expression |
|---|---|
| pmapidclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 2 | pmapidcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
| 3 | 1, 2 | psubclssatN 40050 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 4 | pmapidcl.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 5 | pmapidcl.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | eqid 2733 | . . . 4 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 7 | 4, 1, 5, 6 | 2polvalN 40023 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
| 8 | 3, 7 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
| 9 | 6, 2 | psubcli2N 40048 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑋)) = 𝑋) |
| 10 | 8, 9 | eqtr3d 2770 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 ‘cfv 6489 lubclub 18225 Atomscatm 39372 HLchlt 39459 pmapcpmap 39606 ⊥𝑃cpolN 40011 PSubClcpscN 40043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-p1 18340 df-lat 18348 df-clat 18415 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-pmap 39613 df-polarityN 40012 df-psubclN 40044 |
| This theorem is referenced by: psubclinN 40057 paddatclN 40058 |
| Copyright terms: Public domain | W3C validator |