Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapidclN Structured version   Visualization version   GIF version

Theorem pmapidclN 39921
Description: Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapidcl.u 𝑈 = (lub‘𝐾)
pmapidcl.m 𝑀 = (pmap‘𝐾)
pmapidcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
pmapidclN ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)

Proof of Theorem pmapidclN
StepHypRef Expression
1 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
2 pmapidcl.c . . . 4 𝐶 = (PSubCl‘𝐾)
31, 2psubclssatN 39920 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
4 pmapidcl.u . . . 4 𝑈 = (lub‘𝐾)
5 pmapidcl.m . . . 4 𝑀 = (pmap‘𝐾)
6 eqid 2729 . . . 4 (⊥𝑃𝐾) = (⊥𝑃𝐾)
74, 1, 5, 62polvalN 39893 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾)) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
83, 7syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = (𝑀‘(𝑈𝑋)))
96, 2psubcli2N 39918 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘𝑋)) = 𝑋)
108, 9eqtr3d 2766 1 ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905  cfv 6486  lubclub 18233  Atomscatm 39241  HLchlt 39328  pmapcpmap 39476  𝑃cpolN 39881  PSubClcpscN 39913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-pmap 39483  df-polarityN 39882  df-psubclN 39914
This theorem is referenced by:  psubclinN  39927  paddatclN  39928
  Copyright terms: Public domain W3C validator