Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Structured version   Visualization version   GIF version

Theorem osumclN 37908
Description: Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumclN (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl2 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋𝐶)
3 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 osumcl.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 37882 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐶)
83, 4psubclssatN 37882 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
10 osumcl.p . . . 4 + = (+𝑃𝐾)
113, 10paddssat 37755 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
121, 6, 9, 11syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
13 simpll1 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
14 oveq1 7262 . . . . . 6 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
153, 10padd02 37753 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌)
161, 9, 15syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (∅ + 𝑌) = 𝑌)
1714, 16sylan9eqr 2801 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
18 simpll3 1212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝑌𝐶)
1917, 18eqeltrd 2839 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶)
20 osumcl.o . . . . 5 = (⊥𝑃𝐾)
2120, 4psubcli2N 37880 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2213, 19, 21syl2anc 583 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2310, 20, 4osumcllem11N 37907 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2423anassrs 467 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2524eqcomd 2744 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2622, 25pm2.61dane 3031 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
273, 20, 4ispsubclN 37878 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
281, 27syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
2912, 26, 28mpbir2and 709 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  Atomscatm 37204  HLchlt 37291  +𝑃cpadd 37736  𝑃cpolN 37843  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844  df-psubclN 37876
This theorem is referenced by:  pmapojoinN  37909  pexmidN  37910
  Copyright terms: Public domain W3C validator