Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Structured version   Visualization version   GIF version

Theorem osumclN 39949
Description: Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumclN (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl2 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋𝐶)
3 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 osumcl.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 39923 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐶)
83, 4psubclssatN 39923 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
10 osumcl.p . . . 4 + = (+𝑃𝐾)
113, 10paddssat 39796 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
121, 6, 9, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
13 simpll1 1213 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
14 oveq1 7360 . . . . . 6 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
153, 10padd02 39794 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌)
161, 9, 15syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (∅ + 𝑌) = 𝑌)
1714, 16sylan9eqr 2786 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
18 simpll3 1215 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝑌𝐶)
1917, 18eqeltrd 2828 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶)
20 osumcl.o . . . . 5 = (⊥𝑃𝐾)
2120, 4psubcli2N 39921 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2213, 19, 21syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2310, 20, 4osumcllem11N 39948 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2423anassrs 467 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2524eqcomd 2735 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2622, 25pm2.61dane 3012 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
273, 20, 4ispsubclN 39919 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
281, 27syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
2912, 26, 28mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  c0 4286  cfv 6486  (class class class)co 7353  Atomscatm 39244  HLchlt 39331  +𝑃cpadd 39777  𝑃cpolN 39884  PSubClcpscN 39916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-polarityN 39885  df-psubclN 39917
This theorem is referenced by:  pmapojoinN  39950  pexmidN  39951
  Copyright terms: Public domain W3C validator