Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Structured version   Visualization version   GIF version

Theorem osumclN 37981
Description: Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumclN (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl2 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋𝐶)
3 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 osumcl.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 37955 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐶)
83, 4psubclssatN 37955 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
10 osumcl.p . . . 4 + = (+𝑃𝐾)
113, 10paddssat 37828 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
121, 6, 9, 11syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
13 simpll1 1211 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
14 oveq1 7282 . . . . . 6 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
153, 10padd02 37826 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌)
161, 9, 15syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (∅ + 𝑌) = 𝑌)
1714, 16sylan9eqr 2800 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
18 simpll3 1213 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝑌𝐶)
1917, 18eqeltrd 2839 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶)
20 osumcl.o . . . . 5 = (⊥𝑃𝐾)
2120, 4psubcli2N 37953 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2213, 19, 21syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2310, 20, 4osumcllem11N 37980 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2423anassrs 468 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2524eqcomd 2744 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2622, 25pm2.61dane 3032 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
273, 20, 4ispsubclN 37951 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
281, 27syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
2912, 26, 28mpbir2and 710 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916  PSubClcpscN 37948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917  df-psubclN 37949
This theorem is referenced by:  pmapojoinN  37982  pexmidN  37983
  Copyright terms: Public domain W3C validator