Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Structured version   Visualization version   GIF version

Theorem osumclN 37095
Description: Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumclN (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 1186 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl2 1187 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋𝐶)
3 eqid 2819 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 osumcl.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 37069 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐶)
83, 4psubclssatN 37069 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
10 osumcl.p . . . 4 + = (+𝑃𝐾)
113, 10paddssat 36942 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
121, 6, 9, 11syl3anc 1366 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
13 simpll1 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
14 oveq1 7155 . . . . . 6 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
153, 10padd02 36940 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌)
161, 9, 15syl2anc 586 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (∅ + 𝑌) = 𝑌)
1714, 16sylan9eqr 2876 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
18 simpll3 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝑌𝐶)
1917, 18eqeltrd 2911 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶)
20 osumcl.o . . . . 5 = (⊥𝑃𝐾)
2120, 4psubcli2N 37067 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2213, 19, 21syl2anc 586 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2310, 20, 4osumcllem11N 37094 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2423anassrs 470 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2524eqcomd 2825 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2622, 25pm2.61dane 3102 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
273, 20, 4ispsubclN 37065 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
281, 27syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
2912, 26, 28mpbir2and 711 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wss 3934  c0 4289  cfv 6348  (class class class)co 7148  Atomscatm 36391  HLchlt 36478  +𝑃cpadd 36923  𝑃cpolN 37030  PSubClcpscN 37062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36081
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-undef 7931  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-polarityN 37031  df-psubclN 37063
This theorem is referenced by:  pmapojoinN  37096  pexmidN  37097
  Copyright terms: Public domain W3C validator