Proof of Theorem osumclN
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1191 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) |
| 2 | | simpl2 1192 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ∈ 𝐶) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 4 | | osumcl.c |
. . . . 5
⊢ 𝐶 = (PSubCl‘𝐾) |
| 5 | 3, 4 | psubclssatN 39944 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 6 | 1, 2, 5 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | | simpl3 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ∈ 𝐶) |
| 8 | 3, 4 | psubclssatN 39944 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 10 | | osumcl.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
| 11 | 3, 10 | paddssat 39817 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 12 | 1, 6, 9, 11 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾)) |
| 13 | | simpll1 1212 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL) |
| 14 | | oveq1 7439 |
. . . . . 6
⊢ (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌)) |
| 15 | 3, 10 | padd02 39815 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌) |
| 16 | 1, 9, 15 | syl2anc 584 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (∅ + 𝑌) = 𝑌) |
| 17 | 14, 16 | sylan9eqr 2798 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌) |
| 18 | | simpll3 1214 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 = ∅) → 𝑌 ∈ 𝐶) |
| 19 | 17, 18 | eqeltrd 2840 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶) |
| 20 | | osumcl.o |
. . . . 5
⊢ ⊥ =
(⊥𝑃‘𝐾) |
| 21 | 20, 4 | psubcli2N 39942 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)) |
| 22 | 13, 19, 21 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 = ∅) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)) |
| 23 | 10, 20, 4 | osumcllem11N 39969 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |
| 24 | 23 | anassrs 467 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌)))) |
| 25 | 24 | eqcomd 2742 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ 𝑋 ≠ ∅) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)) |
| 26 | 22, 25 | pm2.61dane 3028 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)) |
| 27 | 3, 20, 4 | ispsubclN 39940 |
. . 3
⊢ (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)))) |
| 28 | 1, 27 | syl 17 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) = (𝑋 + 𝑌)))) |
| 29 | 12, 26, 28 | mpbir2and 713 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 + 𝑌) ∈ 𝐶) |