Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Structured version   Visualization version   GIF version

Theorem pexmidN 39952
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 39936. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 39950. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a 𝐴 = (Atoms‘𝐾)
pexmid.p + = (+𝑃𝐾)
pexmid.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝐾 ∈ HL)
2 simplr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋𝐴)
3 pexmid.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 pexmid.o . . . . . . 7 = (⊥𝑃𝐾)
53, 4polssatN 39891 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ⊆ 𝐴)
7 pexmid.p . . . . . 6 + = (+𝑃𝐾)
83, 7, 4poldmj1N 39911 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
91, 2, 6, 8syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
103, 4pnonsingN 39916 . . . . 5 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
111, 6, 10syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
129, 11eqtrd 2775 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = ∅)
1312fveq2d 6911 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = ( ‘∅))
14 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( 𝑋)) = 𝑋)
15 eqid 2735 . . . . . . 7 (PSubCl‘𝐾) = (PSubCl‘𝐾)
163, 4, 15ispsubclN 39920 . . . . . 6 (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
1716ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
182, 14, 17mpbir2and 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ (PSubCl‘𝐾))
193, 4, 15polsubclN 39935 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubCl‘𝐾))
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ∈ (PSubCl‘𝐾))
213, 42polssN 39898 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
2221adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ⊆ ( ‘( 𝑋)))
237, 4, 15osumclN 39950 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ ( 𝑋) ∈ (PSubCl‘𝐾)) ∧ 𝑋 ⊆ ( ‘( 𝑋))) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
241, 18, 20, 22, 23syl31anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
254, 15psubcli2N 39922 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾)) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
261, 24, 25syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
273, 4pol0N 39892 . . 3 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
2827ad2antrr 726 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘∅) = 𝐴)
2913, 26, 283eqtr3d 2783 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cin 3962  wss 3963  c0 4339  cfv 6563  (class class class)co 7431  Atomscatm 39245  HLchlt 39332  +𝑃cpadd 39778  𝑃cpolN 39885  PSubClcpscN 39917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-polarityN 39886  df-psubclN 39918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator