Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Structured version   Visualization version   GIF version

Theorem pexmidN 39972
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 39956. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 39970. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a 𝐴 = (Atoms‘𝐾)
pexmid.p + = (+𝑃𝐾)
pexmid.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝐾 ∈ HL)
2 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋𝐴)
3 pexmid.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 pexmid.o . . . . . . 7 = (⊥𝑃𝐾)
53, 4polssatN 39911 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ⊆ 𝐴)
7 pexmid.p . . . . . 6 + = (+𝑃𝐾)
83, 7, 4poldmj1N 39931 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
91, 2, 6, 8syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
103, 4pnonsingN 39936 . . . . 5 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
111, 6, 10syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
129, 11eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = ∅)
1312fveq2d 6909 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = ( ‘∅))
14 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( 𝑋)) = 𝑋)
15 eqid 2736 . . . . . . 7 (PSubCl‘𝐾) = (PSubCl‘𝐾)
163, 4, 15ispsubclN 39940 . . . . . 6 (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
1716ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
182, 14, 17mpbir2and 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ (PSubCl‘𝐾))
193, 4, 15polsubclN 39955 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubCl‘𝐾))
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ∈ (PSubCl‘𝐾))
213, 42polssN 39918 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
2221adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ⊆ ( ‘( 𝑋)))
237, 4, 15osumclN 39970 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ ( 𝑋) ∈ (PSubCl‘𝐾)) ∧ 𝑋 ⊆ ( ‘( 𝑋))) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
241, 18, 20, 22, 23syl31anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
254, 15psubcli2N 39942 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾)) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
261, 24, 25syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
273, 4pol0N 39912 . . 3 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
2827ad2antrr 726 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘∅) = 𝐴)
2913, 26, 283eqtr3d 2784 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3949  wss 3950  c0 4332  cfv 6560  (class class class)co 7432  Atomscatm 39265  HLchlt 39352  +𝑃cpadd 39798  𝑃cpolN 39905  PSubClcpscN 39937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-polarityN 39906  df-psubclN 39938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator