Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Structured version   Visualization version   GIF version

Theorem pexmidN 40016
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 40000. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 40014. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a 𝐴 = (Atoms‘𝐾)
pexmid.p + = (+𝑃𝐾)
pexmid.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝐾 ∈ HL)
2 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋𝐴)
3 pexmid.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 pexmid.o . . . . . . 7 = (⊥𝑃𝐾)
53, 4polssatN 39955 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ⊆ 𝐴)
7 pexmid.p . . . . . 6 + = (+𝑃𝐾)
83, 7, 4poldmj1N 39975 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
91, 2, 6, 8syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
103, 4pnonsingN 39980 . . . . 5 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
111, 6, 10syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
129, 11eqtrd 2766 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = ∅)
1312fveq2d 6826 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = ( ‘∅))
14 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( 𝑋)) = 𝑋)
15 eqid 2731 . . . . . . 7 (PSubCl‘𝐾) = (PSubCl‘𝐾)
163, 4, 15ispsubclN 39984 . . . . . 6 (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
1716ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
182, 14, 17mpbir2and 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ (PSubCl‘𝐾))
193, 4, 15polsubclN 39999 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubCl‘𝐾))
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ∈ (PSubCl‘𝐾))
213, 42polssN 39962 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
2221adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ⊆ ( ‘( 𝑋)))
237, 4, 15osumclN 40014 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ ( 𝑋) ∈ (PSubCl‘𝐾)) ∧ 𝑋 ⊆ ( ‘( 𝑋))) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
241, 18, 20, 22, 23syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
254, 15psubcli2N 39986 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾)) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
261, 24, 25syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
273, 4pol0N 39956 . . 3 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
2827ad2antrr 726 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘∅) = 𝐴)
2913, 26, 283eqtr3d 2774 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897  c0 4280  cfv 6481  (class class class)co 7346  Atomscatm 39310  HLchlt 39397  +𝑃cpadd 39842  𝑃cpolN 39949  PSubClcpscN 39981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-polarityN 39950  df-psubclN 39982
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator