Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Structured version   Visualization version   GIF version

Theorem pexmidN 39948
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 39932. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 39946. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a 𝐴 = (Atoms‘𝐾)
pexmid.p + = (+𝑃𝐾)
pexmid.o = (⊥𝑃𝐾)
Assertion
Ref Expression
pexmidN (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝐾 ∈ HL)
2 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋𝐴)
3 pexmid.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 pexmid.o . . . . . . 7 = (⊥𝑃𝐾)
53, 4polssatN 39887 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
65adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ⊆ 𝐴)
7 pexmid.p . . . . . 6 + = (+𝑃𝐾)
83, 7, 4poldmj1N 39907 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ ( 𝑋) ⊆ 𝐴) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
91, 2, 6, 8syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = (( 𝑋) ∩ ( ‘( 𝑋))))
103, 4pnonsingN 39912 . . . . 5 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
111, 6, 10syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (( 𝑋) ∩ ( ‘( 𝑋))) = ∅)
129, 11eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘(𝑋 + ( 𝑋))) = ∅)
1312fveq2d 6826 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = ( ‘∅))
14 simpr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( 𝑋)) = 𝑋)
15 eqid 2729 . . . . . . 7 (PSubCl‘𝐾) = (PSubCl‘𝐾)
163, 4, 15ispsubclN 39916 . . . . . 6 (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
1716ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
182, 14, 17mpbir2and 713 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ∈ (PSubCl‘𝐾))
193, 4, 15polsubclN 39931 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubCl‘𝐾))
2019adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( 𝑋) ∈ (PSubCl‘𝐾))
213, 42polssN 39894 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
2221adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → 𝑋 ⊆ ( ‘( 𝑋)))
237, 4, 15osumclN 39946 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ ( 𝑋) ∈ (PSubCl‘𝐾)) ∧ 𝑋 ⊆ ( ‘( 𝑋))) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
241, 18, 20, 22, 23syl31anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾))
254, 15psubcli2N 39918 . . 3 ((𝐾 ∈ HL ∧ (𝑋 + ( 𝑋)) ∈ (PSubCl‘𝐾)) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
261, 24, 25syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘( ‘(𝑋 + ( 𝑋)))) = (𝑋 + ( 𝑋)))
273, 4pol0N 39888 . . 3 (𝐾 ∈ HL → ( ‘∅) = 𝐴)
2827ad2antrr 726 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → ( ‘∅) = 𝐴)
2913, 26, 283eqtr3d 2772 1 (((𝐾 ∈ HL ∧ 𝑋𝐴) ∧ ( ‘( 𝑋)) = 𝑋) → (𝑋 + ( 𝑋)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903  c0 4284  cfv 6482  (class class class)co 7349  Atomscatm 39242  HLchlt 39329  +𝑃cpadd 39774  𝑃cpolN 39881  PSubClcpscN 39913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-polarityN 39882  df-psubclN 39914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator