Proof of Theorem pexmidN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 766 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → 𝐾 ∈ HL) | 
| 2 |  | simplr 768 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → 𝑋 ⊆ 𝐴) | 
| 3 |  | pexmid.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | pexmid.o | . . . . . . 7
⊢  ⊥ =
(⊥𝑃‘𝐾) | 
| 5 | 3, 4 | polssatN 39911 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | 
| 6 | 5 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘𝑋) ⊆ 𝐴) | 
| 7 |  | pexmid.p | . . . . . 6
⊢  + =
(+𝑃‘𝐾) | 
| 8 | 3, 7, 4 | poldmj1N 39931 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘𝑋) ⊆ 𝐴) → ( ⊥ ‘(𝑋 + ( ⊥ ‘𝑋))) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥
‘𝑋)))) | 
| 9 | 1, 2, 6, 8 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘(𝑋 + ( ⊥ ‘𝑋))) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥
‘𝑋)))) | 
| 10 | 3, 4 | pnonsingN 39936 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘𝑋) ⊆ 𝐴) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥
‘𝑋))) =
∅) | 
| 11 | 1, 6, 10 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → (( ⊥ ‘𝑋) ∩ ( ⊥ ‘( ⊥
‘𝑋))) =
∅) | 
| 12 | 9, 11 | eqtrd 2776 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘(𝑋 + ( ⊥ ‘𝑋))) = ∅) | 
| 13 | 12 | fveq2d 6909 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥
‘(𝑋 + ( ⊥
‘𝑋)))) = ( ⊥
‘∅)) | 
| 14 |  | simpr 484 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) | 
| 15 |  | eqid 2736 | . . . . . . 7
⊢
(PSubCl‘𝐾) =
(PSubCl‘𝐾) | 
| 16 | 3, 4, 15 | ispsubclN 39940 | . . . . . 6
⊢ (𝐾 ∈ HL → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋))) | 
| 17 | 16 | ad2antrr 726 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → (𝑋 ∈ (PSubCl‘𝐾) ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋))) | 
| 18 | 2, 14, 17 | mpbir2and 713 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → 𝑋 ∈ (PSubCl‘𝐾)) | 
| 19 | 3, 4, 15 | polsubclN 39955 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ (PSubCl‘𝐾)) | 
| 20 | 19 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘𝑋) ∈ (PSubCl‘𝐾)) | 
| 21 | 3, 4 | 2polssN 39918 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 22 | 21 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) | 
| 23 | 7, 4, 15 | osumclN 39970 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ (PSubCl‘𝐾) ∧ ( ⊥ ‘𝑋) ∈ (PSubCl‘𝐾)) ∧ 𝑋 ⊆ ( ⊥ ‘( ⊥
‘𝑋))) → (𝑋 + ( ⊥ ‘𝑋)) ∈ (PSubCl‘𝐾)) | 
| 24 | 1, 18, 20, 22, 23 | syl31anc 1374 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) ∈ (PSubCl‘𝐾)) | 
| 25 | 4, 15 | psubcli2N 39942 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 + ( ⊥ ‘𝑋)) ∈ (PSubCl‘𝐾)) → ( ⊥ ‘( ⊥
‘(𝑋 + ( ⊥
‘𝑋)))) = (𝑋 + ( ⊥ ‘𝑋))) | 
| 26 | 1, 24, 25 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘( ⊥
‘(𝑋 + ( ⊥
‘𝑋)))) = (𝑋 + ( ⊥ ‘𝑋))) | 
| 27 | 3, 4 | pol0N 39912 | . . 3
⊢ (𝐾 ∈ HL → ( ⊥
‘∅) = 𝐴) | 
| 28 | 27 | ad2antrr 726 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → ( ⊥ ‘∅) =
𝐴) | 
| 29 | 13, 26, 28 | 3eqtr3d 2784 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) ∧ ( ⊥ ‘( ⊥
‘𝑋)) = 𝑋) → (𝑋 + ( ⊥ ‘𝑋)) = 𝐴) |