Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem3N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 37908. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . 2 ⊢ (( ⊥ ‘𝑋) ∩ 𝑈) = (𝑈 ∩ ( ⊥ ‘𝑋)) | |
2 | osumcllem.u | . . . . 5 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
3 | simp1 1134 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
4 | simp3 1136 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
5 | osumcllem.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | osumcllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 6 | psubclssatN 37882 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
8 | 7 | 3adant3 1130 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ 𝐴) |
9 | osumcllem.o | . . . . . . . . . . 11 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
10 | 5, 9 | polssatN 37849 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
11 | 3, 8, 10 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
12 | 4, 11 | sstrd 3927 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) |
13 | osumcllem.p | . . . . . . . . 9 ⊢ + = (+𝑃‘𝐾) | |
14 | 5, 13, 9 | poldmj1N 37869 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
15 | 3, 12, 8, 14 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
16 | incom 4131 | . . . . . . 7 ⊢ (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)) | |
17 | 15, 16 | eqtrdi 2795 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) |
18 | 17 | fveq2d 6760 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
19 | 2, 18 | syl5eq 2791 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑈 = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
20 | 19 | ineq1d 4142 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋))) |
21 | 5, 9 | polcon2N 37860 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
22 | 8, 21 | syld3an2 1409 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
23 | 5, 9 | poml5N 37895 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘𝑋)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
24 | 3, 12, 22, 23 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
25 | 9, 6 | psubcli2N 37880 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
26 | 25 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
27 | 20, 24, 26 | 3eqtrd 2782 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = 𝑌) |
28 | 1, 27 | syl5eq 2791 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 HLchlt 37291 +𝑃cpadd 37736 ⊥𝑃cpolN 37843 PSubClcpscN 37875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-polarityN 37844 df-psubclN 37876 |
This theorem is referenced by: osumcllem9N 37905 |
Copyright terms: Public domain | W3C validator |