Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   GIF version

Theorem osumcllem3N 40003
Description: Lemma for osumclN 40012. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem3N ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 4159 . 2 (( 𝑋) ∩ 𝑈) = (𝑈 ∩ ( 𝑋))
2 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
3 simp1 1136 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
4 simp3 1138 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
6 osumcllem.c . . . . . . . . . . . 12 𝐶 = (PSubCl‘𝐾)
75, 6psubclssatN 39986 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
873adant3 1132 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
9 osumcllem.o . . . . . . . . . . 11 = (⊥𝑃𝐾)
105, 9polssatN 39953 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
113, 8, 10syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
124, 11sstrd 3945 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
13 osumcllem.p . . . . . . . . 9 + = (+𝑃𝐾)
145, 13, 9poldmj1N 39973 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
153, 12, 8, 14syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
16 incom 4159 . . . . . . 7 (( 𝑋) ∩ ( 𝑌)) = (( 𝑌) ∩ ( 𝑋))
1715, 16eqtrdi 2782 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑌) ∩ ( 𝑋)))
1817fveq2d 6826 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = ( ‘(( 𝑌) ∩ ( 𝑋))))
192, 18eqtrid 2778 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑈 = ( ‘(( 𝑌) ∩ ( 𝑋))))
2019ineq1d 4169 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)))
215, 9polcon2N 39964 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
228, 21syld3an2 1413 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
235, 9poml5N 39999 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
243, 12, 22, 23syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
259, 6psubcli2N 39984 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
26253adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) = 𝑌)
2720, 24, 263eqtrd 2770 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = 𝑌)
281, 27eqtrid 2778 1 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3901  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  Atomscatm 39308  HLchlt 39395  +𝑃cpadd 39840  𝑃cpolN 39947  PSubClcpscN 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-polarityN 39948  df-psubclN 39980
This theorem is referenced by:  osumcllem9N  40009
  Copyright terms: Public domain W3C validator