Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   GIF version

Theorem osumcllem3N 39977
Description: Lemma for osumclN 39986. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem3N ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 4184 . 2 (( 𝑋) ∩ 𝑈) = (𝑈 ∩ ( 𝑋))
2 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
3 simp1 1136 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
4 simp3 1138 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
6 osumcllem.c . . . . . . . . . . . 12 𝐶 = (PSubCl‘𝐾)
75, 6psubclssatN 39960 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
873adant3 1132 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
9 osumcllem.o . . . . . . . . . . 11 = (⊥𝑃𝐾)
105, 9polssatN 39927 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
113, 8, 10syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
124, 11sstrd 3969 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
13 osumcllem.p . . . . . . . . 9 + = (+𝑃𝐾)
145, 13, 9poldmj1N 39947 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
153, 12, 8, 14syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
16 incom 4184 . . . . . . 7 (( 𝑋) ∩ ( 𝑌)) = (( 𝑌) ∩ ( 𝑋))
1715, 16eqtrdi 2786 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑌) ∩ ( 𝑋)))
1817fveq2d 6880 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = ( ‘(( 𝑌) ∩ ( 𝑋))))
192, 18eqtrid 2782 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑈 = ( ‘(( 𝑌) ∩ ( 𝑋))))
2019ineq1d 4194 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)))
215, 9polcon2N 39938 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
228, 21syld3an2 1413 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
235, 9poml5N 39973 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
243, 12, 22, 23syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
259, 6psubcli2N 39958 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
26253adant3 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) = 𝑌)
2720, 24, 263eqtrd 2774 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = 𝑌)
281, 27eqtrid 2782 1 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cin 3925  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  Atomscatm 39281  HLchlt 39368  +𝑃cpadd 39814  𝑃cpolN 39921  PSubClcpscN 39953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-polarityN 39922  df-psubclN 39954
This theorem is referenced by:  osumcllem9N  39983
  Copyright terms: Public domain W3C validator