Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   GIF version

Theorem osumcllem3N 38829
Description: Lemma for osumclN 38838. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l ≀ = (leβ€˜πΎ)
osumcllem.j ∨ = (joinβ€˜πΎ)
osumcllem.a 𝐴 = (Atomsβ€˜πΎ)
osumcllem.p + = (+π‘ƒβ€˜πΎ)
osumcllem.o βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
osumcllem.c 𝐢 = (PSubClβ€˜πΎ)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))
Assertion
Ref Expression
osumcllem3N ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜π‘‹) ∩ π‘ˆ) = π‘Œ)

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 4202 . 2 (( βŠ₯ β€˜π‘‹) ∩ π‘ˆ) = (π‘ˆ ∩ ( βŠ₯ β€˜π‘‹))
2 osumcllem.u . . . . 5 π‘ˆ = ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ)))
3 simp1 1137 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝐾 ∈ HL)
4 simp3 1139 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ))
5 osumcllem.a . . . . . . . . . . . 12 𝐴 = (Atomsβ€˜πΎ)
6 osumcllem.c . . . . . . . . . . . 12 𝐢 = (PSubClβ€˜πΎ)
75, 6psubclssatN 38812 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢) β†’ π‘Œ βŠ† 𝐴)
873adant3 1133 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ π‘Œ βŠ† 𝐴)
9 osumcllem.o . . . . . . . . . . 11 βŠ₯ = (βŠ₯π‘ƒβ€˜πΎ)
105, 9polssatN 38779 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴)
113, 8, 10syl2anc 585 . . . . . . . . 9 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜π‘Œ) βŠ† 𝐴)
124, 11sstrd 3993 . . . . . . . 8 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ 𝑋 βŠ† 𝐴)
13 osumcllem.p . . . . . . . . 9 + = (+π‘ƒβ€˜πΎ)
145, 13, 9poldmj1N 38799 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴) β†’ ( βŠ₯ β€˜(𝑋 + π‘Œ)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)))
153, 12, 8, 14syl3anc 1372 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜(𝑋 + π‘Œ)) = (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)))
16 incom 4202 . . . . . . 7 (( βŠ₯ β€˜π‘‹) ∩ ( βŠ₯ β€˜π‘Œ)) = (( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))
1715, 16eqtrdi 2789 . . . . . 6 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜(𝑋 + π‘Œ)) = (( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹)))
1817fveq2d 6896 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(𝑋 + π‘Œ))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))))
192, 18eqtrid 2785 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ π‘ˆ = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))))
2019ineq1d 4212 . . 3 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (π‘ˆ ∩ ( βŠ₯ β€˜π‘‹)) = (( βŠ₯ β€˜(( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))) ∩ ( βŠ₯ β€˜π‘‹)))
215, 9polcon2N 38790 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ βŠ† 𝐴 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ π‘Œ βŠ† ( βŠ₯ β€˜π‘‹))
228, 21syld3an2 1412 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ π‘Œ βŠ† ( βŠ₯ β€˜π‘‹))
235, 9poml5N 38825 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† ( βŠ₯ β€˜π‘‹)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))) ∩ ( βŠ₯ β€˜π‘‹)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)))
243, 12, 22, 23syl3anc 1372 . . 3 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜(( βŠ₯ β€˜π‘Œ) ∩ ( βŠ₯ β€˜π‘‹))) ∩ ( βŠ₯ β€˜π‘‹)) = ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)))
259, 6psubcli2N 38810 . . . 4 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ)
26253adant3 1133 . . 3 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘Œ)) = π‘Œ)
2720, 24, 263eqtrd 2777 . 2 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (π‘ˆ ∩ ( βŠ₯ β€˜π‘‹)) = π‘Œ)
281, 27eqtrid 2785 1 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢 ∧ 𝑋 βŠ† ( βŠ₯ β€˜π‘Œ)) β†’ (( βŠ₯ β€˜π‘‹) ∩ π‘ˆ) = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ∩ cin 3948   βŠ† wss 3949  {csn 4629  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  Atomscatm 38133  HLchlt 38220  +𝑃cpadd 38666  βŠ₯𝑃cpolN 38773  PSubClcpscN 38805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-polarityN 38774  df-psubclN 38806
This theorem is referenced by:  osumcllem9N  38835
  Copyright terms: Public domain W3C validator