![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem3N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 38776. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4200 | . 2 ⊢ (( ⊥ ‘𝑋) ∩ 𝑈) = (𝑈 ∩ ( ⊥ ‘𝑋)) | |
2 | osumcllem.u | . . . . 5 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
3 | simp1 1137 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
4 | simp3 1139 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
5 | osumcllem.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | osumcllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 6 | psubclssatN 38750 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
8 | 7 | 3adant3 1133 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ 𝐴) |
9 | osumcllem.o | . . . . . . . . . . 11 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
10 | 5, 9 | polssatN 38717 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
11 | 3, 8, 10 | syl2anc 585 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
12 | 4, 11 | sstrd 3991 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) |
13 | osumcllem.p | . . . . . . . . 9 ⊢ + = (+𝑃‘𝐾) | |
14 | 5, 13, 9 | poldmj1N 38737 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
15 | 3, 12, 8, 14 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
16 | incom 4200 | . . . . . . 7 ⊢ (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)) | |
17 | 15, 16 | eqtrdi 2789 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) |
18 | 17 | fveq2d 6892 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
19 | 2, 18 | eqtrid 2785 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑈 = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
20 | 19 | ineq1d 4210 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋))) |
21 | 5, 9 | polcon2N 38728 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
22 | 8, 21 | syld3an2 1412 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
23 | 5, 9 | poml5N 38763 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘𝑋)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
24 | 3, 12, 22, 23 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
25 | 9, 6 | psubcli2N 38748 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
26 | 25 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
27 | 20, 24, 26 | 3eqtrd 2777 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = 𝑌) |
28 | 1, 27 | eqtrid 2785 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∩ cin 3946 ⊆ wss 3947 {csn 4627 ‘cfv 6540 (class class class)co 7404 lecple 17200 joincjn 18260 Atomscatm 38071 HLchlt 38158 +𝑃cpadd 38604 ⊥𝑃cpolN 38711 PSubClcpscN 38743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7970 df-2nd 7971 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 37984 df-ol 37986 df-oml 37987 df-covers 38074 df-ats 38075 df-atl 38106 df-cvlat 38130 df-hlat 38159 df-psubsp 38312 df-pmap 38313 df-padd 38605 df-polarityN 38712 df-psubclN 38744 |
This theorem is referenced by: osumcllem9N 38773 |
Copyright terms: Public domain | W3C validator |