![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem3N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 35776. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3956 | . 2 ⊢ (( ⊥ ‘𝑋) ∩ 𝑈) = (𝑈 ∩ ( ⊥ ‘𝑋)) | |
2 | osumcllem.u | . . . . 5 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
3 | simp1 1130 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
4 | simp3 1132 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
5 | osumcllem.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | osumcllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 6 | psubclssatN 35750 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
8 | 7 | 3adant3 1126 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ 𝐴) |
9 | osumcllem.o | . . . . . . . . . . 11 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
10 | 5, 9 | polssatN 35717 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
11 | 3, 8, 10 | syl2anc 573 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
12 | 4, 11 | sstrd 3762 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) |
13 | osumcllem.p | . . . . . . . . 9 ⊢ + = (+𝑃‘𝐾) | |
14 | 5, 13, 9 | poldmj1N 35737 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
15 | 3, 12, 8, 14 | syl3anc 1476 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
16 | incom 3956 | . . . . . . 7 ⊢ (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)) | |
17 | 15, 16 | syl6eq 2821 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) |
18 | 17 | fveq2d 6337 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
19 | 2, 18 | syl5eq 2817 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑈 = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
20 | 19 | ineq1d 3964 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋))) |
21 | 5, 9 | polcon2N 35728 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
22 | 8, 21 | syld3an2 1518 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
23 | 5, 9 | poml5N 35763 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘𝑋)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
24 | 3, 12, 22, 23 | syl3anc 1476 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
25 | 9, 6 | psubcli2N 35748 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
26 | 25 | 3adant3 1126 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
27 | 20, 24, 26 | 3eqtrd 2809 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = 𝑌) |
28 | 1, 27 | syl5eq 2817 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 {csn 4317 ‘cfv 6030 (class class class)co 6796 lecple 16156 joincjn 17152 Atomscatm 35072 HLchlt 35159 +𝑃cpadd 35604 ⊥𝑃cpolN 35711 PSubClcpscN 35743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-undef 7555 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-psubsp 35312 df-pmap 35313 df-padd 35605 df-polarityN 35712 df-psubclN 35744 |
This theorem is referenced by: osumcllem9N 35773 |
Copyright terms: Public domain | W3C validator |