Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem3N Structured version   Visualization version   GIF version

Theorem osumcllem3N 37972
Description: Lemma for osumclN 37981. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem3N ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)

Proof of Theorem osumcllem3N
StepHypRef Expression
1 incom 4135 . 2 (( 𝑋) ∩ 𝑈) = (𝑈 ∩ ( 𝑋))
2 osumcllem.u . . . . 5 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
3 simp1 1135 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
4 simp3 1137 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ ( 𝑌))
5 osumcllem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
6 osumcllem.c . . . . . . . . . . . 12 𝐶 = (PSubCl‘𝐾)
75, 6psubclssatN 37955 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌𝐴)
873adant3 1131 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌𝐴)
9 osumcllem.o . . . . . . . . . . 11 = (⊥𝑃𝐾)
105, 9polssatN 37922 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( 𝑌) ⊆ 𝐴)
113, 8, 10syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( 𝑌) ⊆ 𝐴)
124, 11sstrd 3931 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑋𝐴)
13 osumcllem.p . . . . . . . . 9 + = (+𝑃𝐾)
145, 13, 9poldmj1N 37942 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
153, 12, 8, 14syl3anc 1370 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑋) ∩ ( 𝑌)))
16 incom 4135 . . . . . . 7 (( 𝑋) ∩ ( 𝑌)) = (( 𝑌) ∩ ( 𝑋))
1715, 16eqtrdi 2794 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘(𝑋 + 𝑌)) = (( 𝑌) ∩ ( 𝑋)))
1817fveq2d 6778 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = ( ‘(( 𝑌) ∩ ( 𝑋))))
192, 18eqtrid 2790 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑈 = ( ‘(( 𝑌) ∩ ( 𝑋))))
2019ineq1d 4145 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)))
215, 9polcon2N 37933 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
228, 21syld3an2 1410 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
235, 9poml5N 37968 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌 ⊆ ( 𝑋)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
243, 12, 22, 23syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑌) ∩ ( 𝑋))) ∩ ( 𝑋)) = ( ‘( 𝑌)))
259, 6psubcli2N 37953 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ( ‘( 𝑌)) = 𝑌)
26253adant3 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → ( ‘( 𝑌)) = 𝑌)
2720, 24, 263eqtrd 2782 . 2 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (𝑈 ∩ ( 𝑋)) = 𝑌)
281, 27eqtrid 2790 1 ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  +𝑃cpadd 37809  𝑃cpolN 37916  PSubClcpscN 37948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-polarityN 37917  df-psubclN 37949
This theorem is referenced by:  osumcllem9N  37978
  Copyright terms: Public domain W3C validator