Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem3N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 37543. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem3N | ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4106 | . 2 ⊢ (( ⊥ ‘𝑋) ∩ 𝑈) = (𝑈 ∩ ( ⊥ ‘𝑋)) | |
2 | osumcllem.u | . . . . 5 ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) | |
3 | simp1 1133 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝐾 ∈ HL) | |
4 | simp3 1135 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | |
5 | osumcllem.a | . . . . . . . . . . . 12 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | osumcllem.c | . . . . . . . . . . . 12 ⊢ 𝐶 = (PSubCl‘𝐾) | |
7 | 5, 6 | psubclssatN 37517 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ 𝐴) |
8 | 7 | 3adant3 1129 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ 𝐴) |
9 | osumcllem.o | . . . . . . . . . . 11 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
10 | 5, 9 | polssatN 37484 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
11 | 3, 8, 10 | syl2anc 587 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘𝑌) ⊆ 𝐴) |
12 | 4, 11 | sstrd 3902 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑋 ⊆ 𝐴) |
13 | osumcllem.p | . . . . . . . . 9 ⊢ + = (+𝑃‘𝐾) | |
14 | 5, 13, 9 | poldmj1N 37504 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
15 | 3, 12, 8, 14 | syl3anc 1368 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) |
16 | incom 4106 | . . . . . . 7 ⊢ (( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)) | |
17 | 15, 16 | eqtrdi 2809 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘(𝑋 + 𝑌)) = (( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) |
18 | 17 | fveq2d 6662 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
19 | 2, 18 | syl5eq 2805 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑈 = ( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋)))) |
20 | 19 | ineq1d 4116 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋))) |
21 | 5, 9 | polcon2N 37495 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
22 | 8, 21 | syld3an2 1408 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) |
23 | 5, 9 | poml5N 37530 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ ( ⊥ ‘𝑋)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
24 | 3, 12, 22, 23 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑌) ∩ ( ⊥ ‘𝑋))) ∩ ( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) |
25 | 9, 6 | psubcli2N 37515 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
26 | 25 | 3adant3 1129 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
27 | 20, 24, 26 | 3eqtrd 2797 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑈 ∩ ( ⊥ ‘𝑋)) = 𝑌) |
28 | 1, 27 | syl5eq 2805 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 ⊆ wss 3858 {csn 4522 ‘cfv 6335 (class class class)co 7150 lecple 16630 joincjn 17620 Atomscatm 36839 HLchlt 36926 +𝑃cpadd 37371 ⊥𝑃cpolN 37478 PSubClcpscN 37510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-riotaBAD 36529 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-undef 7949 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-oposet 36752 df-ol 36754 df-oml 36755 df-covers 36842 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-psubsp 37079 df-pmap 37080 df-padd 37372 df-polarityN 37479 df-psubclN 37511 |
This theorem is referenced by: osumcllem9N 37540 |
Copyright terms: Public domain | W3C validator |