MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthiswlk Structured version   Visualization version   GIF version

Theorem pthiswlk 29655
Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
pthiswlk (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem pthiswlk
StepHypRef Expression
1 pthistrl 29653 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29625 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5107  cfv 6511  Walkscwlks 29524  Trailsctrls 29618  Pathscpths 29640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-wlks 29527  df-trls 29620  df-pths 29644
This theorem is referenced by:  spthiswlk  29656  pthdadjvtx  29658  2pthnloop  29661  upgr2pthnlp  29662  pthonpth  29678  cycliswlk  29728  cyclnumvtx  29730  wspthsnonn0vne  29847  upgr3v3e3cycl  30109  upgr4cycl4dv4e  30114  pthhashvtx  35115  spthcycl  35116  loop1cycl  35124  upgrimpthslem2  47908  upgrimpths  47909  cycl3grtrilem  47945  cycl3grtri  47946
  Copyright terms: Public domain W3C validator