MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthiswlk Structured version   Visualization version   GIF version

Theorem pthiswlk 29745
Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
pthiswlk (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem pthiswlk
StepHypRef Expression
1 pthistrl 29743 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29715 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5143  cfv 6561  Walkscwlks 29614  Trailsctrls 29708  Pathscpths 29730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-wlks 29617  df-trls 29710  df-pths 29734
This theorem is referenced by:  spthiswlk  29746  pthdadjvtx  29748  2pthnloop  29751  upgr2pthnlp  29752  pthonpth  29768  cycliswlk  29818  cyclnumvtx  29820  wspthsnonn0vne  29937  upgr3v3e3cycl  30199  upgr4cycl4dv4e  30204  pthhashvtx  35133  spthcycl  35134  loop1cycl  35142  cycl3grtrilem  47913  cycl3grtri  47914
  Copyright terms: Public domain W3C validator