MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthiswlk Structured version   Visualization version   GIF version

Theorem pthiswlk 29705
Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
pthiswlk (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem pthiswlk
StepHypRef Expression
1 pthistrl 29703 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 29676 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5093  cfv 6486  Walkscwlks 29577  Trailsctrls 29669  Pathscpths 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-wlks 29580  df-trls 29671  df-pths 29694
This theorem is referenced by:  spthiswlk  29706  pthdadjvtx  29708  2pthnloop  29711  upgr2pthnlp  29712  pthonpth  29728  cycliswlk  29778  cyclnumvtx  29780  wspthsnonn0vne  29897  upgr3v3e3cycl  30162  upgr4cycl4dv4e  30167  pthhashvtx  35193  spthcycl  35194  loop1cycl  35202  upgrimpthslem2  48032  upgrimpths  48033  cycl3grtrilem  48070  cycl3grtri  48071
  Copyright terms: Public domain W3C validator