Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pthiswlk | Structured version Visualization version GIF version |
Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
pthiswlk | ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthistrl 28202 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
2 | trliswlk 28174 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 class class class wbr 5087 ‘cfv 6465 Walkscwlks 28072 Trailsctrls 28167 Pathscpths 28189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fv 6473 df-ov 7318 df-wlks 28075 df-trls 28169 df-pths 28193 |
This theorem is referenced by: spthiswlk 28205 pthdadjvtx 28207 2pthnloop 28208 upgr2pthnlp 28209 pthonpth 28225 cycliswlk 28275 wspthsnonn0vne 28391 upgr3v3e3cycl 28653 upgr4cycl4dv4e 28658 pthhashvtx 33194 spthcycl 33196 loop1cycl 33204 |
Copyright terms: Public domain | W3C validator |