| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthiswlk | Structured version Visualization version GIF version | ||
| Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
| Ref | Expression |
|---|---|
| pthiswlk | ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthistrl 29653 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | trliswlk 29625 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5107 ‘cfv 6511 Walkscwlks 29524 Trailsctrls 29618 Pathscpths 29640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-wlks 29527 df-trls 29620 df-pths 29644 |
| This theorem is referenced by: spthiswlk 29656 pthdadjvtx 29658 2pthnloop 29661 upgr2pthnlp 29662 pthonpth 29678 cycliswlk 29728 cyclnumvtx 29730 wspthsnonn0vne 29847 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 pthhashvtx 35115 spthcycl 35116 loop1cycl 35124 upgrimpthslem2 47908 upgrimpths 47909 cycl3grtrilem 47945 cycl3grtri 47946 |
| Copyright terms: Public domain | W3C validator |