| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthiswlk | Structured version Visualization version GIF version | ||
| Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
| Ref | Expression |
|---|---|
| pthiswlk | ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthistrl 29699 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | trliswlk 29672 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5091 ‘cfv 6481 Walkscwlks 29573 Trailsctrls 29665 Pathscpths 29686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-wlks 29576 df-trls 29667 df-pths 29690 |
| This theorem is referenced by: spthiswlk 29702 pthdadjvtx 29704 2pthnloop 29707 upgr2pthnlp 29708 pthonpth 29724 cycliswlk 29774 cyclnumvtx 29776 wspthsnonn0vne 29893 upgr3v3e3cycl 30155 upgr4cycl4dv4e 30160 pthhashvtx 35160 spthcycl 35161 loop1cycl 35169 upgrimpthslem2 47938 upgrimpths 47939 cycl3grtrilem 47976 cycl3grtri 47977 |
| Copyright terms: Public domain | W3C validator |