MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthiswlk Structured version   Visualization version   GIF version

Theorem pthiswlk 28204
Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
pthiswlk (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem pthiswlk
StepHypRef Expression
1 pthistrl 28202 . 2 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
2 trliswlk 28174 . 2 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
31, 2syl 17 1 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5087  cfv 6465  Walkscwlks 28072  Trailsctrls 28167  Pathscpths 28189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fv 6473  df-ov 7318  df-wlks 28075  df-trls 28169  df-pths 28193
This theorem is referenced by:  spthiswlk  28205  pthdadjvtx  28207  2pthnloop  28208  upgr2pthnlp  28209  pthonpth  28225  cycliswlk  28275  wspthsnonn0vne  28391  upgr3v3e3cycl  28653  upgr4cycl4dv4e  28658  pthhashvtx  33194  spthcycl  33196  loop1cycl  33204
  Copyright terms: Public domain W3C validator