| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pthiswlk | Structured version Visualization version GIF version | ||
| Description: A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
| Ref | Expression |
|---|---|
| pthiswlk | ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthistrl 29703 | . 2 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 2 | trliswlk 29676 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5093 ‘cfv 6486 Walkscwlks 29577 Trailsctrls 29669 Pathscpths 29690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-wlks 29580 df-trls 29671 df-pths 29694 |
| This theorem is referenced by: spthiswlk 29706 pthdadjvtx 29708 2pthnloop 29711 upgr2pthnlp 29712 pthonpth 29728 cycliswlk 29778 cyclnumvtx 29780 wspthsnonn0vne 29897 upgr3v3e3cycl 30162 upgr4cycl4dv4e 30167 pthhashvtx 35193 spthcycl 35194 loop1cycl 35202 upgrimpthslem2 48032 upgrimpths 48033 cycl3grtrilem 48070 cycl3grtri 48071 |
| Copyright terms: Public domain | W3C validator |