![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2trlspth | Structured version Visualization version GIF version |
Description: In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021.) |
Ref | Expression |
---|---|
usgr2trlspth | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr2trlncl 27112 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) | |
2 | 1 | imp 397 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘2)) |
3 | trliswlk 27048 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | wlkonwlk 27009 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | |
5 | simpll 757 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → 𝐺 ∈ USGraph) | |
6 | simplr 759 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (♯‘𝐹) = 2) | |
7 | fveq2 6446 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2)) | |
8 | 7 | eqcomd 2783 | . . . . . . . . . . . . . 14 ⊢ ((♯‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(♯‘𝐹))) |
9 | 8 | neeq2d 3028 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
10 | 9 | biimpd 221 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
11 | 10 | adantl 475 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
12 | 11 | imp 397 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
13 | usgr2wlkspth 27111 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) | |
14 | 5, 6, 12, 13 | syl3anc 1439 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) |
15 | spthonisspth 27102 | . . . . . . . . 9 ⊢ (𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃) | |
16 | 14, 15 | syl6bi 245 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
17 | 16 | expcom 404 | . . . . . . 7 ⊢ ((𝑃‘0) ≠ (𝑃‘2) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃))) |
18 | 17 | com13 88 | . . . . . 6 ⊢ (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
19 | 3, 4, 18 | 3syl 18 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
20 | 19 | impcom 398 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃)) |
21 | 2, 20 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
22 | 21 | ex 403 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
23 | spthispth 27078 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
24 | pthistrl 27077 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
26 | 22, 25 | impbid1 217 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 0cc0 10272 2c2 11430 ♯chash 13435 USGraphcusgr 26498 Walkscwlks 26944 WalksOncwlkson 26945 Trailsctrls 27041 Pathscpths 27064 SPathscspths 27065 SPathsOncspthson 27067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-s2 13999 df-s3 14000 df-edg 26396 df-uhgr 26406 df-upgr 26430 df-umgr 26431 df-uspgr 26499 df-usgr 26500 df-wlks 26947 df-wlkson 26948 df-trls 27043 df-trlson 27044 df-pths 27068 df-spths 27069 df-pthson 27070 df-spthson 27071 |
This theorem is referenced by: usgr2pthspth 27114 |
Copyright terms: Public domain | W3C validator |