Step | Hyp | Ref
| Expression |
1 | | usgr2trlncl 29281 |
. . . . 5
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(TrailsβπΊ)π β (πβ0) β (πβ2))) |
2 | 1 | imp 406 |
. . . 4
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ πΉ(TrailsβπΊ)π) β (πβ0) β (πβ2)) |
3 | | trliswlk 29218 |
. . . . . 6
β’ (πΉ(TrailsβπΊ)π β πΉ(WalksβπΊ)π) |
4 | | wlkonwlk 29183 |
. . . . . 6
β’ (πΉ(WalksβπΊ)π β πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π) |
5 | | simpll 764 |
. . . . . . . . . 10
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ (πβ0) β
(πβ2)) β πΊ β
USGraph) |
6 | | simplr 766 |
. . . . . . . . . 10
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ (πβ0) β
(πβ2)) β
(β―βπΉ) =
2) |
7 | | fveq2 6892 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
2 β (πβ(β―βπΉ)) = (πβ2)) |
8 | 7 | eqcomd 2737 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ) =
2 β (πβ2) =
(πβ(β―βπΉ))) |
9 | 8 | neeq2d 3000 |
. . . . . . . . . . . . 13
β’
((β―βπΉ) =
2 β ((πβ0) β
(πβ2) β (πβ0) β (πβ(β―βπΉ)))) |
10 | 9 | biimpd 228 |
. . . . . . . . . . . 12
β’
((β―βπΉ) =
2 β ((πβ0) β
(πβ2) β (πβ0) β (πβ(β―βπΉ)))) |
11 | 10 | adantl 481 |
. . . . . . . . . . 11
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β ((πβ0) β
(πβ2) β (πβ0) β (πβ(β―βπΉ)))) |
12 | 11 | imp 406 |
. . . . . . . . . 10
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ (πβ0) β
(πβ2)) β (πβ0) β (πβ(β―βπΉ))) |
13 | | usgr2wlkspth 29280 |
. . . . . . . . . 10
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
(πβ0) β (πβ(β―βπΉ))) β (πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π β πΉ((πβ0)(SPathsOnβπΊ)(πβ(β―βπΉ)))π)) |
14 | 5, 6, 12, 13 | syl3anc 1370 |
. . . . . . . . 9
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ (πβ0) β
(πβ2)) β (πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π β πΉ((πβ0)(SPathsOnβπΊ)(πβ(β―βπΉ)))π)) |
15 | | spthonisspth 29271 |
. . . . . . . . 9
β’ (πΉ((πβ0)(SPathsOnβπΊ)(πβ(β―βπΉ)))π β πΉ(SPathsβπΊ)π) |
16 | 14, 15 | syl6bi 252 |
. . . . . . . 8
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ (πβ0) β
(πβ2)) β (πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π β πΉ(SPathsβπΊ)π)) |
17 | 16 | expcom 413 |
. . . . . . 7
β’ ((πβ0) β (πβ2) β ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π β πΉ(SPathsβπΊ)π))) |
18 | 17 | com13 88 |
. . . . . 6
β’ (πΉ((πβ0)(WalksOnβπΊ)(πβ(β―βπΉ)))π β ((πΊ β USGraph β§ (β―βπΉ) = 2) β ((πβ0) β (πβ2) β πΉ(SPathsβπΊ)π))) |
19 | 3, 4, 18 | 3syl 18 |
. . . . 5
β’ (πΉ(TrailsβπΊ)π β ((πΊ β USGraph β§ (β―βπΉ) = 2) β ((πβ0) β (πβ2) β πΉ(SPathsβπΊ)π))) |
20 | 19 | impcom 407 |
. . . 4
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ πΉ(TrailsβπΊ)π) β ((πβ0) β (πβ2) β πΉ(SPathsβπΊ)π)) |
21 | 2, 20 | mpd 15 |
. . 3
β’ (((πΊ β USGraph β§
(β―βπΉ) = 2)
β§ πΉ(TrailsβπΊ)π) β πΉ(SPathsβπΊ)π) |
22 | 21 | ex 412 |
. 2
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(TrailsβπΊ)π β πΉ(SPathsβπΊ)π)) |
23 | | spthispth 29247 |
. . 3
β’ (πΉ(SPathsβπΊ)π β πΉ(PathsβπΊ)π) |
24 | | pthistrl 29246 |
. . 3
β’ (πΉ(PathsβπΊ)π β πΉ(TrailsβπΊ)π) |
25 | 23, 24 | syl 17 |
. 2
β’ (πΉ(SPathsβπΊ)π β πΉ(TrailsβπΊ)π) |
26 | 22, 25 | impbid1 224 |
1
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2)
β (πΉ(TrailsβπΊ)π β πΉ(SPathsβπΊ)π)) |