Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgr2trlspth | Structured version Visualization version GIF version |
Description: In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021.) |
Ref | Expression |
---|---|
usgr2trlspth | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgr2trlncl 28137 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) | |
2 | 1 | imp 407 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘2)) |
3 | trliswlk 28074 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | wlkonwlk 28039 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | |
5 | simpll 764 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → 𝐺 ∈ USGraph) | |
6 | simplr 766 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (♯‘𝐹) = 2) | |
7 | fveq2 6783 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2)) | |
8 | 7 | eqcomd 2745 | . . . . . . . . . . . . . 14 ⊢ ((♯‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(♯‘𝐹))) |
9 | 8 | neeq2d 3005 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
10 | 9 | biimpd 228 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
11 | 10 | adantl 482 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
12 | 11 | imp 407 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
13 | usgr2wlkspth 28136 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) | |
14 | 5, 6, 12, 13 | syl3anc 1370 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) |
15 | spthonisspth 28127 | . . . . . . . . 9 ⊢ (𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃) | |
16 | 14, 15 | syl6bi 252 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
17 | 16 | expcom 414 | . . . . . . 7 ⊢ ((𝑃‘0) ≠ (𝑃‘2) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃))) |
18 | 17 | com13 88 | . . . . . 6 ⊢ (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
19 | 3, 4, 18 | 3syl 18 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
20 | 19 | impcom 408 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃)) |
21 | 2, 20 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
22 | 21 | ex 413 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
23 | spthispth 28103 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
24 | pthistrl 28102 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
26 | 22, 25 | impbid1 224 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 0cc0 10880 2c2 12037 ♯chash 14053 USGraphcusgr 27528 Walkscwlks 27972 WalksOncwlkson 27973 Trailsctrls 28067 Pathscpths 28089 SPathscspths 28090 SPathsOncspthson 28092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-2o 8307 df-oadd 8310 df-er 8507 df-map 8626 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-dju 9668 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-xnn0 12315 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-hash 14054 df-word 14227 df-concat 14283 df-s1 14310 df-s2 14570 df-s3 14571 df-edg 27427 df-uhgr 27437 df-upgr 27461 df-umgr 27462 df-uspgr 27529 df-usgr 27530 df-wlks 27975 df-wlkson 27976 df-trls 28069 df-trlson 28070 df-pths 28093 df-spths 28094 df-pthson 28095 df-spthson 28096 |
This theorem is referenced by: usgr2pthspth 28139 |
Copyright terms: Public domain | W3C validator |