| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr2trlspth | Structured version Visualization version GIF version | ||
| Description: In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021.) |
| Ref | Expression |
|---|---|
| usgr2trlspth | ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2trlncl 29690 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) | |
| 2 | 1 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃‘0) ≠ (𝑃‘2)) |
| 3 | trliswlk 29625 | . . . . . 6 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 4 | wlkonwlk 29590 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | |
| 5 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → 𝐺 ∈ USGraph) | |
| 6 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (♯‘𝐹) = 2) | |
| 7 | fveq2 6858 | . . . . . . . . . . . . . . 15 ⊢ ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = (𝑃‘2)) | |
| 8 | 7 | eqcomd 2735 | . . . . . . . . . . . . . 14 ⊢ ((♯‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(♯‘𝐹))) |
| 9 | 8 | neeq2d 2985 | . . . . . . . . . . . . 13 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 10 | 9 | biimpd 229 | . . . . . . . . . . . 12 ⊢ ((♯‘𝐹) = 2 → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 11 | 10 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 12 | 11 | imp 406 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) |
| 13 | usgr2wlkspth 29689 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) | |
| 14 | 5, 6, 12, 13 | syl3anc 1373 | . . . . . . . . 9 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 ↔ 𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃)) |
| 15 | spthonisspth 29680 | . . . . . . . . 9 ⊢ (𝐹((𝑃‘0)(SPathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃) | |
| 16 | 14, 15 | biimtrdi 253 | . . . . . . . 8 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ (𝑃‘0) ≠ (𝑃‘2)) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
| 17 | 16 | expcom 413 | . . . . . . 7 ⊢ ((𝑃‘0) ≠ (𝑃‘2) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → 𝐹(SPaths‘𝐺)𝑃))) |
| 18 | 17 | com13 88 | . . . . . 6 ⊢ (𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
| 19 | 3, 4, 18 | 3syl 18 | . . . . 5 ⊢ (𝐹(Trails‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃))) |
| 20 | 19 | impcom 407 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → ((𝑃‘0) ≠ (𝑃‘2) → 𝐹(SPaths‘𝐺)𝑃)) |
| 21 | 2, 20 | mpd 15 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
| 22 | 21 | ex 412 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → 𝐹(SPaths‘𝐺)𝑃)) |
| 23 | spthispth 29654 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 24 | pthistrl 29653 | . . 3 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
| 26 | 22, 25 | impbid1 225 | 1 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 2c2 12241 ♯chash 14295 USGraphcusgr 29076 Walkscwlks 29524 WalksOncwlkson 29525 Trailsctrls 29618 Pathscpths 29640 SPathscspths 29641 SPathsOncspthson 29643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-edg 28975 df-uhgr 28985 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 df-wlks 29527 df-wlkson 29528 df-trls 29620 df-trlson 29621 df-pths 29644 df-spths 29645 df-pthson 29646 df-spthson 29647 |
| This theorem is referenced by: usgr2pthspth 29692 |
| Copyright terms: Public domain | W3C validator |