Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val | Structured version Visualization version GIF version |
Description: Function value of the pw2f1o2 40776 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
Ref | Expression |
---|---|
pw2f1o2val | ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7745 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → ◡𝑋 ∈ V) | |
2 | imaexg 7736 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {1o}) ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (◡𝑋 “ {1o}) ∈ V) |
4 | cnveq 5771 | . . . 4 ⊢ (𝑥 = 𝑋 → ◡𝑥 = ◡𝑋) | |
5 | 4 | imaeq1d 5957 | . . 3 ⊢ (𝑥 = 𝑋 → (◡𝑥 “ {1o}) = (◡𝑋 “ {1o})) |
6 | pw2f1o2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
7 | 5, 6 | fvmptg 6855 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ (◡𝑋 “ {1o}) ∈ V) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
8 | 3, 7 | mpdan 683 | 1 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 1oc1o 8260 2oc2o 8261 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: pw2f1o2val2 40778 |
Copyright terms: Public domain | W3C validator |