Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1o2val Structured version   Visualization version   GIF version

Theorem pw2f1o2val 43014
Description: Function value of the pw2f1o2 43013 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1o2val (𝑋 ∈ (2om 𝐴) → (𝐹𝑋) = (𝑋 “ {1o}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pw2f1o2val
StepHypRef Expression
1 cnvexg 7928 . . 3 (𝑋 ∈ (2om 𝐴) → 𝑋 ∈ V)
2 imaexg 7917 . . 3 (𝑋 ∈ V → (𝑋 “ {1o}) ∈ V)
31, 2syl 17 . 2 (𝑋 ∈ (2om 𝐴) → (𝑋 “ {1o}) ∈ V)
4 cnveq 5864 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
54imaeq1d 6057 . . 3 (𝑥 = 𝑋 → (𝑥 “ {1o}) = (𝑋 “ {1o}))
6 pw2f1o2.f . . 3 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
75, 6fvmptg 6994 . 2 ((𝑋 ∈ (2om 𝐴) ∧ (𝑋 “ {1o}) ∈ V) → (𝐹𝑋) = (𝑋 “ {1o}))
83, 7mpdan 687 1 (𝑋 ∈ (2om 𝐴) → (𝐹𝑋) = (𝑋 “ {1o}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cmpt 5205  ccnv 5664  cima 5668  cfv 6541  (class class class)co 7413  1oc1o 8481  2oc2o 8482  m cmap 8848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549
This theorem is referenced by:  pw2f1o2val2  43015
  Copyright terms: Public domain W3C validator