Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1o2val Structured version   Visualization version   GIF version

Theorem pw2f1o2val 40861
Description: Function value of the pw2f1o2 40860 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1o2val (𝑋 ∈ (2om 𝐴) → (𝐹𝑋) = (𝑋 “ {1o}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pw2f1o2val
StepHypRef Expression
1 cnvexg 7771 . . 3 (𝑋 ∈ (2om 𝐴) → 𝑋 ∈ V)
2 imaexg 7762 . . 3 (𝑋 ∈ V → (𝑋 “ {1o}) ∈ V)
31, 2syl 17 . 2 (𝑋 ∈ (2om 𝐴) → (𝑋 “ {1o}) ∈ V)
4 cnveq 5782 . . . 4 (𝑥 = 𝑋𝑥 = 𝑋)
54imaeq1d 5968 . . 3 (𝑥 = 𝑋 → (𝑥 “ {1o}) = (𝑋 “ {1o}))
6 pw2f1o2.f . . 3 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
75, 6fvmptg 6873 . 2 ((𝑋 ∈ (2om 𝐴) ∧ (𝑋 “ {1o}) ∈ V) → (𝐹𝑋) = (𝑋 “ {1o}))
83, 7mpdan 684 1 (𝑋 ∈ (2om 𝐴) → (𝐹𝑋) = (𝑋 “ {1o}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  1oc1o 8290  2oc2o 8291  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  pw2f1o2val2  40862
  Copyright terms: Public domain W3C validator