![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val | Structured version Visualization version GIF version |
Description: Function value of the pw2f1o2 43043 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
Ref | Expression |
---|---|
pw2f1o2val | ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7954 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → ◡𝑋 ∈ V) | |
2 | imaexg 7943 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {1o}) ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (◡𝑋 “ {1o}) ∈ V) |
4 | cnveq 5891 | . . . 4 ⊢ (𝑥 = 𝑋 → ◡𝑥 = ◡𝑋) | |
5 | 4 | imaeq1d 6084 | . . 3 ⊢ (𝑥 = 𝑋 → (◡𝑥 “ {1o}) = (◡𝑋 “ {1o})) |
6 | pw2f1o2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
7 | 5, 6 | fvmptg 7021 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ (◡𝑋 “ {1o}) ∈ V) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
8 | 3, 7 | mpdan 687 | 1 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 ↦ cmpt 5234 ◡ccnv 5692 “ cima 5696 ‘cfv 6569 (class class class)co 7438 1oc1o 8507 2oc2o 8508 ↑m cmap 8874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 |
This theorem is referenced by: pw2f1o2val2 43045 |
Copyright terms: Public domain | W3C validator |