Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2val | Structured version Visualization version GIF version |
Description: Function value of the pw2f1o2 40860 bijection. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
Ref | Expression |
---|---|
pw2f1o2val | ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7771 | . . 3 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → ◡𝑋 ∈ V) | |
2 | imaexg 7762 | . . 3 ⊢ (◡𝑋 ∈ V → (◡𝑋 “ {1o}) ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (◡𝑋 “ {1o}) ∈ V) |
4 | cnveq 5782 | . . . 4 ⊢ (𝑥 = 𝑋 → ◡𝑥 = ◡𝑋) | |
5 | 4 | imaeq1d 5968 | . . 3 ⊢ (𝑥 = 𝑋 → (◡𝑥 “ {1o}) = (◡𝑋 “ {1o})) |
6 | pw2f1o2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
7 | 5, 6 | fvmptg 6873 | . 2 ⊢ ((𝑋 ∈ (2o ↑m 𝐴) ∧ (◡𝑋 “ {1o}) ∈ V) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
8 | 3, 7 | mpdan 684 | 1 ⊢ (𝑋 ∈ (2o ↑m 𝐴) → (𝐹‘𝑋) = (◡𝑋 “ {1o})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 2oc2o 8291 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: pw2f1o2val2 40862 |
Copyright terms: Public domain | W3C validator |