![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pw2f1o2 | Structured version Visualization version GIF version |
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 9141, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
pw2f1o2.f | ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) |
Ref | Expression |
---|---|
pw2f1o2 | ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2f1o2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (2o ↑m 𝐴) ↦ (◡𝑥 “ {1o})) | |
2 | 1 | pw2f1ocnv 42931 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴 ∧ ◡𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑦, 1o, ∅))))) |
3 | 2 | simpld 494 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:(2o ↑m 𝐴)–1-1-onto→𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 ∅c0 4347 ifcif 4548 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5252 ◡ccnv 5698 “ cima 5702 –1-1-onto→wf1o 6571 (class class class)co 7445 1oc1o 8511 2oc2o 8512 ↑m cmap 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-ord 6397 df-on 6398 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1o 8518 df-2o 8519 df-map 8882 |
This theorem is referenced by: wepwsolem 42939 pwfi2f1o 42993 |
Copyright terms: Public domain | W3C validator |