Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pw2f1o2 Structured version   Visualization version   GIF version

Theorem pw2f1o2 40847
Description: Define a bijection between characteristic functions and subsets. EDITORIAL: extracted from pw2en 8855, which can be easily reproved in terms of this. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
pw2f1o2.f 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
Assertion
Ref Expression
pw2f1o2 (𝐴𝑉𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pw2f1o2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw2f1o2.f . . 3 𝐹 = (𝑥 ∈ (2om 𝐴) ↦ (𝑥 “ {1o}))
21pw2f1ocnv 40846 . 2 (𝐴𝑉 → (𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴𝐹 = (𝑦 ∈ 𝒫 𝐴 ↦ (𝑧𝐴 ↦ if(𝑧𝑦, 1o, ∅)))))
32simpld 495 1 (𝐴𝑉𝐹:(2om 𝐴)–1-1-onto→𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  c0 4258  ifcif 4461  𝒫 cpw 4535  {csn 4563  cmpt 5158  ccnv 5585  cima 5589  1-1-ontowf1o 6427  (class class class)co 7269  1oc1o 8279  2oc2o 8280  m cmap 8604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-ord 6264  df-on 6265  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1o 8286  df-2o 8287  df-map 8606
This theorem is referenced by:  wepwsolem  40854  pwfi2f1o  40908
  Copyright terms: Public domain W3C validator