Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2 Structured version   Visualization version   GIF version

Theorem neibastop2 36395
Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Distinct variable groups:   𝑣,𝑡,𝑦,𝑥   𝑣,𝐽   𝑥,𝑦,𝐽   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑃   𝑜,𝑁,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝐹,𝑡,𝑣,𝑤,𝑥,𝑦   𝜑,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝑋,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑜)

Proof of Theorem neibastop2
Dummy variables 𝑓 𝑛 𝑧 𝑠 𝑢 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . . . . . . 9 (𝜑𝑋𝑉)
2 neibastop1.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . . . . . . 9 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 36393 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 22823 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
87adantr 480 . . . . . 6 ((𝜑𝑃𝑋) → 𝐽 ∈ Top)
9 eqid 2731 . . . . . . 7 𝐽 = 𝐽
109neii1 23016 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
118, 10sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
12 toponuni 22824 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
135, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1413ad2antrr 726 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = 𝐽)
1511, 14sseqtrrd 3967 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁𝑋)
16 neii2 23018 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
178, 16sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
18 pweq 4559 . . . . . . . . . . 11 (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦)
1918ineq2d 4165 . . . . . . . . . 10 (𝑜 = 𝑦 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑦))
2019neeq1d 2987 . . . . . . . . 9 (𝑜 = 𝑦 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2120raleqbi1dv 3304 . . . . . . . 8 (𝑜 = 𝑦 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2221, 4elrab2 3645 . . . . . . 7 (𝑦𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
23 simprrr 781 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑦𝑁)
2423sspwd 4558 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁)
25 sslin 4188 . . . . . . . . . . . 12 (𝒫 𝑦 ⊆ 𝒫 𝑁 → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
27 simprrl 780 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → {𝑃} ⊆ 𝑦)
28 snssg 4731 . . . . . . . . . . . . . 14 (𝑃𝑋 → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
2928ad3antlr 731 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
3027, 29mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑃𝑦)
31 fveq2 6817 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3231ineq1d 4164 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥) ∩ 𝒫 𝑦) = ((𝐹𝑃) ∩ 𝒫 𝑦))
3332neeq1d 2987 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → (((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3433rspcv 3568 . . . . . . . . . . . 12 (𝑃𝑦 → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3530, 34syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
36 ssn0 4349 . . . . . . . . . . 11 ((((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
3726, 35, 36syl6an 684 . . . . . . . . . 10 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
3837expr 456 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦𝑦𝑁) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
3938com23 86 . . . . . . . 8 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4039expimpd 453 . . . . . . 7 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4122, 40biimtrid 242 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦𝐽 → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4241rexlimdv 3131 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4317, 42mpd 15 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
4415, 43jca 511 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4544ex 412 . 2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
46 n0 4298 . . . 4 (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁))
47 elin 3913 . . . . . 6 (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))
48 simprl 770 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁𝑋)
4913ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = 𝐽)
5048, 49sseqtrd 3966 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 𝐽)
511ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋𝑉)
522ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
53 simpll 766 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑)
5453, 3sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
55 neibastop1.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
5653, 55sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
57 neibastop1.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
5853, 57sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
59 simplr 768 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃𝑋)
60 simprrl 780 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹𝑃))
61 simprrr 781 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁)
6261elpwid 4554 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠𝑁)
63 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝐹𝑛) = (𝐹𝑥))
6463ineq1d 4164 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝐹𝑛) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑏))
6564cbviunv 4984 . . . . . . . . . . . . . 14 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏)
66 pweq 4559 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧)
6766ineq2d 4165 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑧))
6867iuneq2d 4967 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
6965, 68eqtrid 2778 . . . . . . . . . . . . 13 (𝑏 = 𝑧 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
7069cbviunv 4984 . . . . . . . . . . . 12 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)
7170mpteq2i 5182 . . . . . . . . . . 11 (𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
72 rdgeq1 8325 . . . . . . . . . . 11 ((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}))
7371, 72ax-mp 5 . . . . . . . . . 10 rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠})
7473reseq1i 5919 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω)
75 pweq 4559 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓)
7675ineq2d 4165 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐹𝑤) ∩ 𝒫 𝑔) = ((𝐹𝑤) ∩ 𝒫 𝑓))
7776neeq1d 2987 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅))
7877cbvrexvw 3211 . . . . . . . . . . 11 (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅)
79 fveq2 6817 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8079ineq1d 4164 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐹𝑤) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑓))
8180neeq1d 2987 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8281rexbidv 3156 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8378, 82bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑦 → (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8483cbvrabv 3405 . . . . . . . . 9 {𝑤𝑋 ∣ ∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦𝑋 ∣ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
8551, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84neibastop2lem 36394 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
867ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top)
8759, 49eleqtrd 2833 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 𝐽)
889isneip 23015 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
8986, 87, 88syl2anc 584 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
9050, 85, 89mpbir2and 713 . . . . . . 7 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
9190expr 456 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → ((𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9247, 91biimtrid 242 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9392exlimdv 1934 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9446, 93biimtrid 242 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9594expimpd 453 . 2 ((𝜑𝑃𝑋) → ((𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9645, 95impbid 212 1 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cuni 4854   ciun 4936  cmpt 5167  ran crn 5612  cres 5613  wf 6472  cfv 6476  ωcom 7791  reccrdg 8323  Topctop 22803  TopOnctopon 22820  neicnei 23007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-top 22804  df-topon 22821  df-nei 23008
This theorem is referenced by:  neibastop3  36396
  Copyright terms: Public domain W3C validator