Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2 Structured version   Visualization version   GIF version

Theorem neibastop2 36363
Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Distinct variable groups:   𝑣,𝑡,𝑦,𝑥   𝑣,𝐽   𝑥,𝑦,𝐽   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑃   𝑜,𝑁,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝐹,𝑡,𝑣,𝑤,𝑥,𝑦   𝜑,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝑋,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑜)

Proof of Theorem neibastop2
Dummy variables 𝑓 𝑛 𝑧 𝑠 𝑢 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . . . . . . 9 (𝜑𝑋𝑉)
2 neibastop1.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . . . . . . 9 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 36361 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 22920 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
87adantr 480 . . . . . 6 ((𝜑𝑃𝑋) → 𝐽 ∈ Top)
9 eqid 2736 . . . . . . 7 𝐽 = 𝐽
109neii1 23115 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
118, 10sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
12 toponuni 22921 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
135, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1413ad2antrr 726 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = 𝐽)
1511, 14sseqtrrd 4020 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁𝑋)
16 neii2 23117 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
178, 16sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
18 pweq 4613 . . . . . . . . . . 11 (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦)
1918ineq2d 4219 . . . . . . . . . 10 (𝑜 = 𝑦 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑦))
2019neeq1d 2999 . . . . . . . . 9 (𝑜 = 𝑦 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2120raleqbi1dv 3337 . . . . . . . 8 (𝑜 = 𝑦 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2221, 4elrab2 3694 . . . . . . 7 (𝑦𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
23 simprrr 781 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑦𝑁)
2423sspwd 4612 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁)
25 sslin 4242 . . . . . . . . . . . 12 (𝒫 𝑦 ⊆ 𝒫 𝑁 → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
27 simprrl 780 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → {𝑃} ⊆ 𝑦)
28 snssg 4782 . . . . . . . . . . . . . 14 (𝑃𝑋 → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
2928ad3antlr 731 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
3027, 29mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑃𝑦)
31 fveq2 6905 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3231ineq1d 4218 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥) ∩ 𝒫 𝑦) = ((𝐹𝑃) ∩ 𝒫 𝑦))
3332neeq1d 2999 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → (((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3433rspcv 3617 . . . . . . . . . . . 12 (𝑃𝑦 → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3530, 34syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
36 ssn0 4403 . . . . . . . . . . 11 ((((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
3726, 35, 36syl6an 684 . . . . . . . . . 10 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
3837expr 456 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦𝑦𝑁) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
3938com23 86 . . . . . . . 8 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4039expimpd 453 . . . . . . 7 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4122, 40biimtrid 242 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦𝐽 → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4241rexlimdv 3152 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4317, 42mpd 15 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
4415, 43jca 511 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4544ex 412 . 2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
46 n0 4352 . . . 4 (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁))
47 elin 3966 . . . . . 6 (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))
48 simprl 770 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁𝑋)
4913ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = 𝐽)
5048, 49sseqtrd 4019 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 𝐽)
511ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋𝑉)
522ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
53 simpll 766 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑)
5453, 3sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
55 neibastop1.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
5653, 55sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
57 neibastop1.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
5853, 57sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
59 simplr 768 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃𝑋)
60 simprrl 780 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹𝑃))
61 simprrr 781 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁)
6261elpwid 4608 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠𝑁)
63 fveq2 6905 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝐹𝑛) = (𝐹𝑥))
6463ineq1d 4218 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝐹𝑛) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑏))
6564cbviunv 5039 . . . . . . . . . . . . . 14 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏)
66 pweq 4613 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧)
6766ineq2d 4219 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑧))
6867iuneq2d 5021 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
6965, 68eqtrid 2788 . . . . . . . . . . . . 13 (𝑏 = 𝑧 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
7069cbviunv 5039 . . . . . . . . . . . 12 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)
7170mpteq2i 5246 . . . . . . . . . . 11 (𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
72 rdgeq1 8452 . . . . . . . . . . 11 ((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}))
7371, 72ax-mp 5 . . . . . . . . . 10 rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠})
7473reseq1i 5992 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω)
75 pweq 4613 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓)
7675ineq2d 4219 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐹𝑤) ∩ 𝒫 𝑔) = ((𝐹𝑤) ∩ 𝒫 𝑓))
7776neeq1d 2999 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅))
7877cbvrexvw 3237 . . . . . . . . . . 11 (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅)
79 fveq2 6905 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8079ineq1d 4218 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐹𝑤) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑓))
8180neeq1d 2999 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8281rexbidv 3178 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8378, 82bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑦 → (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8483cbvrabv 3446 . . . . . . . . 9 {𝑤𝑋 ∣ ∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦𝑋 ∣ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
8551, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84neibastop2lem 36362 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
867ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top)
8759, 49eleqtrd 2842 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 𝐽)
889isneip 23114 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
8986, 87, 88syl2anc 584 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
9050, 85, 89mpbir2and 713 . . . . . . 7 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
9190expr 456 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → ((𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9247, 91biimtrid 242 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9392exlimdv 1932 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9446, 93biimtrid 242 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9594expimpd 453 . 2 ((𝜑𝑃𝑋) → ((𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9645, 95impbid 212 1 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  cdif 3947  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906   ciun 4990  cmpt 5224  ran crn 5685  cres 5686  wf 6556  cfv 6560  ωcom 7888  reccrdg 8450  Topctop 22900  TopOnctopon 22917  neicnei 23106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-top 22901  df-topon 22918  df-nei 23107
This theorem is referenced by:  neibastop3  36364
  Copyright terms: Public domain W3C validator