Step | Hyp | Ref
| Expression |
1 | | neibastop1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
2 | | neibastop1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
3 | | neibastop1.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
4 | | neibastop1.4 |
. . . . . . . . 9
⊢ 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅} |
5 | 1, 2, 3, 4 | neibastop1 34475 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | | topontop 21970 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) |
9 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
10 | 9 | neii1 22165 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) |
11 | 8, 10 | sylan 579 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) |
12 | | toponuni 21971 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
13 | 5, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
14 | 13 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = ∪ 𝐽) |
15 | 11, 14 | sseqtrrd 3958 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ 𝑋) |
16 | | neii2 22167 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
17 | 8, 16 | sylan 579 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
18 | | pweq 4546 |
. . . . . . . . . . 11
⊢ (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦) |
19 | 18 | ineq2d 4143 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → ((𝐹‘𝑥) ∩ 𝒫 𝑜) = ((𝐹‘𝑥) ∩ 𝒫 𝑦)) |
20 | 19 | neeq1d 3002 |
. . . . . . . . 9
⊢ (𝑜 = 𝑦 → (((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
21 | 20 | raleqbi1dv 3331 |
. . . . . . . 8
⊢ (𝑜 = 𝑦 → (∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
22 | 21, 4 | elrab2 3620 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
23 | | simprrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑦 ⊆ 𝑁) |
24 | 23 | sspwd 4545 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁) |
25 | | sslin 4165 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑦 ⊆
𝒫 𝑁 → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
27 | | simprrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → {𝑃} ⊆ 𝑦) |
28 | | snssg 4715 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) |
29 | 28 | ad3antlr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) |
30 | 27, 29 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑃 ∈ 𝑦) |
31 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑃 → (𝐹‘𝑥) = (𝐹‘𝑃)) |
32 | 31 | ineq1d 4142 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → ((𝐹‘𝑥) ∩ 𝒫 𝑦) = ((𝐹‘𝑃) ∩ 𝒫 𝑦)) |
33 | 32 | neeq1d 3002 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑃 → (((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
34 | 33 | rspcv 3547 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝑦 → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
35 | 30, 34 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
36 | | ssn0 4331 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) |
37 | 26, 35, 36 | syl6an 680 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
38 | 37 | expr 456 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
39 | 38 | com23 86 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
40 | 39 | expimpd 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
41 | 22, 40 | syl5bi 241 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦 ∈ 𝐽 → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
42 | 41 | rexlimdv 3211 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
43 | 17, 42 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) |
44 | 15, 43 | jca 511 |
. . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
45 | 44 | ex 412 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
46 | | n0 4277 |
. . . 4
⊢ (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
47 | | elin 3899 |
. . . . . 6
⊢ (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁)) |
48 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ 𝑋) |
49 | 13 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = ∪ 𝐽) |
50 | 48, 49 | sseqtrd 3957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ ∪ 𝐽) |
51 | 1 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 ∈ 𝑉) |
52 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
53 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑) |
54 | 53, 3 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
55 | | neibastop1.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
56 | 53, 55 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
57 | | neibastop1.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
58 | 53, 57 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
59 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ 𝑋) |
60 | | simprrl 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹‘𝑃)) |
61 | | simprrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁) |
62 | 61 | elpwid 4541 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ⊆ 𝑁) |
63 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (𝐹‘𝑛) = (𝐹‘𝑥)) |
64 | 63 | ineq1d 4142 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑏)) |
65 | 64 | cbviunv 4966 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) |
66 | | pweq 4546 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧) |
67 | 66 | ineq2d 4143 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
68 | 67 | iuneq2d 4950 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → ∪
𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
69 | 65, 68 | syl5eq 2791 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑧 → ∪
𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
70 | 69 | cbviunv 4966 |
. . . . . . . . . . . 12
⊢ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧) |
71 | 70 | mpteq2i 5175 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
72 | | rdgeq1 8213 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠})) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . . 10
⊢
rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) |
74 | 73 | reseq1i 5876 |
. . . . . . . . 9
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω) |
75 | | pweq 4546 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓) |
76 | 75 | ineq2d 4143 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → ((𝐹‘𝑤) ∩ 𝒫 𝑔) = ((𝐹‘𝑤) ∩ 𝒫 𝑓)) |
77 | 76 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅)) |
78 | 77 | cbvrexvw 3373 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅) |
79 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
80 | 79 | ineq1d 4142 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → ((𝐹‘𝑤) ∩ 𝒫 𝑓) = ((𝐹‘𝑦) ∩ 𝒫 𝑓)) |
81 | 80 | neeq1d 3002 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
82 | 81 | rexbidv 3225 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
83 | 78, 82 | syl5bb 282 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
84 | 83 | cbvrabv 3416 |
. . . . . . . . 9
⊢ {𝑤 ∈ 𝑋 ∣ ∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦 ∈ 𝑋 ∣ ∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅} |
85 | 51, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84 | neibastop2lem 34476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)) |
86 | 7 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top) |
87 | 59, 49 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ ∪ 𝐽) |
88 | 9 | isneip 22164 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) |
89 | 86, 87, 88 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) |
90 | 50, 85, 89 | mpbir2and 709 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
91 | 90 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → ((𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
92 | 47, 91 | syl5bi 241 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
93 | 92 | exlimdv 1937 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
94 | 46, 93 | syl5bi 241 |
. . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
95 | 94 | expimpd 453 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
96 | 45, 95 | impbid 211 |
1
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |