| Step | Hyp | Ref
| Expression |
| 1 | | neibastop1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 2 | | neibastop1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
| 3 | | neibastop1.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
| 4 | | neibastop1.4 |
. . . . . . . . 9
⊢ 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅} |
| 5 | 1, 2, 3, 4 | neibastop1 36382 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | | topontop 22856 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) |
| 9 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 10 | 9 | neii1 23049 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) |
| 11 | 8, 10 | sylan 580 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) |
| 12 | | toponuni 22857 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 13 | 5, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 14 | 13 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = ∪ 𝐽) |
| 15 | 11, 14 | sseqtrrd 4001 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ 𝑋) |
| 16 | | neii2 23051 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
| 17 | 8, 16 | sylan 580 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
| 18 | | pweq 4594 |
. . . . . . . . . . 11
⊢ (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦) |
| 19 | 18 | ineq2d 4200 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑦 → ((𝐹‘𝑥) ∩ 𝒫 𝑜) = ((𝐹‘𝑥) ∩ 𝒫 𝑦)) |
| 20 | 19 | neeq1d 2992 |
. . . . . . . . 9
⊢ (𝑜 = 𝑦 → (((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
| 21 | 20 | raleqbi1dv 3321 |
. . . . . . . 8
⊢ (𝑜 = 𝑦 → (∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
| 22 | 21, 4 | elrab2 3679 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) |
| 23 | | simprrr 781 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑦 ⊆ 𝑁) |
| 24 | 23 | sspwd 4593 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁) |
| 25 | | sslin 4223 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑦 ⊆
𝒫 𝑁 → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
| 27 | | simprrl 780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → {𝑃} ⊆ 𝑦) |
| 28 | | snssg 4764 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) |
| 29 | 28 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) |
| 30 | 27, 29 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑃 ∈ 𝑦) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑃 → (𝐹‘𝑥) = (𝐹‘𝑃)) |
| 32 | 31 | ineq1d 4199 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → ((𝐹‘𝑥) ∩ 𝒫 𝑦) = ((𝐹‘𝑃) ∩ 𝒫 𝑦)) |
| 33 | 32 | neeq1d 2992 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑃 → (((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
| 34 | 33 | rspcv 3602 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝑦 → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
| 35 | 30, 34 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) |
| 36 | | ssn0 4384 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) |
| 37 | 26, 35, 36 | syl6an 684 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
| 38 | 37 | expr 456 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
| 39 | 38 | com23 86 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
| 40 | 39 | expimpd 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
| 41 | 22, 40 | biimtrid 242 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦 ∈ 𝐽 → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
| 42 | 41 | rexlimdv 3140 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
| 43 | 17, 42 | mpd 15 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) |
| 44 | 15, 43 | jca 511 |
. . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) |
| 45 | 44 | ex 412 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |
| 46 | | n0 4333 |
. . . 4
⊢ (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) |
| 47 | | elin 3947 |
. . . . . 6
⊢ (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁)) |
| 48 | | simprl 770 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ 𝑋) |
| 49 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = ∪ 𝐽) |
| 50 | 48, 49 | sseqtrd 4000 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ ∪ 𝐽) |
| 51 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 ∈ 𝑉) |
| 52 | 2 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) |
| 53 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑) |
| 54 | 53, 3 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) |
| 55 | | neibastop1.5 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
| 56 | 53, 55 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) |
| 57 | | neibastop1.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
| 58 | 53, 57 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) |
| 59 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ 𝑋) |
| 60 | | simprrl 780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹‘𝑃)) |
| 61 | | simprrr 781 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁) |
| 62 | 61 | elpwid 4589 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ⊆ 𝑁) |
| 63 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (𝐹‘𝑛) = (𝐹‘𝑥)) |
| 64 | 63 | ineq1d 4199 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑏)) |
| 65 | 64 | cbviunv 5021 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) |
| 66 | | pweq 4594 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧) |
| 67 | 66 | ineq2d 4200 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
| 68 | 67 | iuneq2d 5003 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → ∪
𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
| 69 | 65, 68 | eqtrid 2783 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑧 → ∪
𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
| 70 | 69 | cbviunv 5021 |
. . . . . . . . . . . 12
⊢ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧) |
| 71 | 70 | mpteq2i 5222 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) |
| 72 | | rdgeq1 8430 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠})) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . . . . . 10
⊢
rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) |
| 74 | 73 | reseq1i 5967 |
. . . . . . . . 9
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω) |
| 75 | | pweq 4594 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓) |
| 76 | 75 | ineq2d 4200 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → ((𝐹‘𝑤) ∩ 𝒫 𝑔) = ((𝐹‘𝑤) ∩ 𝒫 𝑓)) |
| 77 | 76 | neeq1d 2992 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅)) |
| 78 | 77 | cbvrexvw 3225 |
. . . . . . . . . . 11
⊢
(∃𝑔 ∈
∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅) |
| 79 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
| 80 | 79 | ineq1d 4199 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → ((𝐹‘𝑤) ∩ 𝒫 𝑓) = ((𝐹‘𝑦) ∩ 𝒫 𝑓)) |
| 81 | 80 | neeq1d 2992 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
| 82 | 81 | rexbidv 3165 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
| 83 | 78, 82 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) |
| 84 | 83 | cbvrabv 3431 |
. . . . . . . . 9
⊢ {𝑤 ∈ 𝑋 ∣ ∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦 ∈ 𝑋 ∣ ∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅} |
| 85 | 51, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84 | neibastop2lem 36383 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)) |
| 86 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top) |
| 87 | 59, 49 | eleqtrd 2837 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ ∪ 𝐽) |
| 88 | 9 | isneip 23048 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) |
| 89 | 86, 87, 88 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) |
| 90 | 50, 85, 89 | mpbir2and 713 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) |
| 91 | 90 | expr 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → ((𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 92 | 47, 91 | biimtrid 242 |
. . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 93 | 92 | exlimdv 1933 |
. . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 94 | 46, 93 | biimtrid 242 |
. . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 95 | 94 | expimpd 453 |
. 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) |
| 96 | 45, 95 | impbid 212 |
1
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |