Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2 Structured version   Visualization version   GIF version

Theorem neibastop2 36337
Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Distinct variable groups:   𝑣,𝑡,𝑦,𝑥   𝑣,𝐽   𝑥,𝑦,𝐽   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑃   𝑜,𝑁,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝐹,𝑡,𝑣,𝑤,𝑥,𝑦   𝜑,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝑋,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑜)

Proof of Theorem neibastop2
Dummy variables 𝑓 𝑛 𝑧 𝑠 𝑢 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . . . . . . 9 (𝜑𝑋𝑉)
2 neibastop1.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . . . . . . 9 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 36335 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 22816 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
87adantr 480 . . . . . 6 ((𝜑𝑃𝑋) → 𝐽 ∈ Top)
9 eqid 2729 . . . . . . 7 𝐽 = 𝐽
109neii1 23009 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
118, 10sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
12 toponuni 22817 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
135, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1413ad2antrr 726 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = 𝐽)
1511, 14sseqtrrd 3975 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁𝑋)
16 neii2 23011 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
178, 16sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
18 pweq 4567 . . . . . . . . . . 11 (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦)
1918ineq2d 4173 . . . . . . . . . 10 (𝑜 = 𝑦 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑦))
2019neeq1d 2984 . . . . . . . . 9 (𝑜 = 𝑦 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2120raleqbi1dv 3302 . . . . . . . 8 (𝑜 = 𝑦 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2221, 4elrab2 3653 . . . . . . 7 (𝑦𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
23 simprrr 781 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑦𝑁)
2423sspwd 4566 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁)
25 sslin 4196 . . . . . . . . . . . 12 (𝒫 𝑦 ⊆ 𝒫 𝑁 → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
27 simprrl 780 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → {𝑃} ⊆ 𝑦)
28 snssg 4737 . . . . . . . . . . . . . 14 (𝑃𝑋 → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
2928ad3antlr 731 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
3027, 29mpbird 257 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑃𝑦)
31 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3231ineq1d 4172 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥) ∩ 𝒫 𝑦) = ((𝐹𝑃) ∩ 𝒫 𝑦))
3332neeq1d 2984 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → (((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3433rspcv 3575 . . . . . . . . . . . 12 (𝑃𝑦 → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3530, 34syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
36 ssn0 4357 . . . . . . . . . . 11 ((((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
3726, 35, 36syl6an 684 . . . . . . . . . 10 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
3837expr 456 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦𝑦𝑁) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
3938com23 86 . . . . . . . 8 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4039expimpd 453 . . . . . . 7 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4122, 40biimtrid 242 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦𝐽 → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4241rexlimdv 3128 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4317, 42mpd 15 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
4415, 43jca 511 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4544ex 412 . 2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
46 n0 4306 . . . 4 (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁))
47 elin 3921 . . . . . 6 (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))
48 simprl 770 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁𝑋)
4913ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = 𝐽)
5048, 49sseqtrd 3974 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 𝐽)
511ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋𝑉)
522ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
53 simpll 766 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑)
5453, 3sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
55 neibastop1.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
5653, 55sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
57 neibastop1.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
5853, 57sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
59 simplr 768 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃𝑋)
60 simprrl 780 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹𝑃))
61 simprrr 781 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁)
6261elpwid 4562 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠𝑁)
63 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝐹𝑛) = (𝐹𝑥))
6463ineq1d 4172 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝐹𝑛) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑏))
6564cbviunv 4992 . . . . . . . . . . . . . 14 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏)
66 pweq 4567 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧)
6766ineq2d 4173 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑧))
6867iuneq2d 4975 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
6965, 68eqtrid 2776 . . . . . . . . . . . . 13 (𝑏 = 𝑧 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
7069cbviunv 4992 . . . . . . . . . . . 12 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)
7170mpteq2i 5191 . . . . . . . . . . 11 (𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
72 rdgeq1 8340 . . . . . . . . . . 11 ((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}))
7371, 72ax-mp 5 . . . . . . . . . 10 rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠})
7473reseq1i 5930 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω)
75 pweq 4567 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓)
7675ineq2d 4173 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐹𝑤) ∩ 𝒫 𝑔) = ((𝐹𝑤) ∩ 𝒫 𝑓))
7776neeq1d 2984 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅))
7877cbvrexvw 3208 . . . . . . . . . . 11 (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅)
79 fveq2 6826 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8079ineq1d 4172 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐹𝑤) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑓))
8180neeq1d 2984 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8281rexbidv 3153 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8378, 82bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑦 → (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8483cbvrabv 3407 . . . . . . . . 9 {𝑤𝑋 ∣ ∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦𝑋 ∣ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
8551, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84neibastop2lem 36336 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
867ad2antrr 726 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top)
8759, 49eleqtrd 2830 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 𝐽)
889isneip 23008 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
8986, 87, 88syl2anc 584 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
9050, 85, 89mpbir2and 713 . . . . . . 7 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
9190expr 456 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → ((𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9247, 91biimtrid 242 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9392exlimdv 1933 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9446, 93biimtrid 242 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9594expimpd 453 . 2 ((𝜑𝑃𝑋) → ((𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9645, 95impbid 212 1 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861   ciun 4944  cmpt 5176  ran crn 5624  cres 5625  wf 6482  cfv 6486  ωcom 7806  reccrdg 8338  Topctop 22796  TopOnctopon 22813  neicnei 23000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-top 22797  df-topon 22814  df-nei 23001
This theorem is referenced by:  neibastop3  36338
  Copyright terms: Public domain W3C validator