| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | neibastop1.1 | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 2 |  | neibastop1.2 | . . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) | 
| 3 |  | neibastop1.3 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) | 
| 4 |  | neibastop1.4 | . . . . . . . . 9
⊢ 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅} | 
| 5 | 1, 2, 3, 4 | neibastop1 36361 | . . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 6 |  | topontop 22920 | . . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 7 | 5, 6 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) | 
| 8 | 7 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) | 
| 9 |  | eqid 2736 | . . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 10 | 9 | neii1 23115 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) | 
| 11 | 8, 10 | sylan 580 | . . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ ∪ 𝐽) | 
| 12 |  | toponuni 22921 | . . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 13 | 5, 12 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) | 
| 14 | 13 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = ∪ 𝐽) | 
| 15 | 11, 14 | sseqtrrd 4020 | . . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 ⊆ 𝑋) | 
| 16 |  | neii2 23117 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) | 
| 17 | 8, 16 | sylan 580 | . . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁)) | 
| 18 |  | pweq 4613 | . . . . . . . . . . 11
⊢ (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦) | 
| 19 | 18 | ineq2d 4219 | . . . . . . . . . 10
⊢ (𝑜 = 𝑦 → ((𝐹‘𝑥) ∩ 𝒫 𝑜) = ((𝐹‘𝑥) ∩ 𝒫 𝑦)) | 
| 20 | 19 | neeq1d 2999 | . . . . . . . . 9
⊢ (𝑜 = 𝑦 → (((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 21 | 20 | raleqbi1dv 3337 | . . . . . . . 8
⊢ (𝑜 = 𝑦 → (∀𝑥 ∈ 𝑜 ((𝐹‘𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 22 | 21, 4 | elrab2 3694 | . . . . . . 7
⊢ (𝑦 ∈ 𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 23 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑦 ⊆ 𝑁) | 
| 24 | 23 | sspwd 4612 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁) | 
| 25 |  | sslin 4242 | . . . . . . . . . . . 12
⊢
(𝒫 𝑦 ⊆
𝒫 𝑁 → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) | 
| 26 | 24, 25 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) | 
| 27 |  | simprrl 780 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → {𝑃} ⊆ 𝑦) | 
| 28 |  | snssg 4782 | . . . . . . . . . . . . . 14
⊢ (𝑃 ∈ 𝑋 → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) | 
| 29 | 28 | ad3antlr 731 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (𝑃 ∈ 𝑦 ↔ {𝑃} ⊆ 𝑦)) | 
| 30 | 27, 29 | mpbird 257 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → 𝑃 ∈ 𝑦) | 
| 31 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑃 → (𝐹‘𝑥) = (𝐹‘𝑃)) | 
| 32 | 31 | ineq1d 4218 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → ((𝐹‘𝑥) ∩ 𝒫 𝑦) = ((𝐹‘𝑃) ∩ 𝒫 𝑦)) | 
| 33 | 32 | neeq1d 2999 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑃 → (((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 34 | 33 | rspcv 3617 | . . . . . . . . . . . 12
⊢ (𝑃 ∈ 𝑦 → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 35 | 30, 34 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅)) | 
| 36 |  | ssn0 4403 | . . . . . . . . . . 11
⊢ ((((𝐹‘𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) | 
| 37 | 26, 35, 36 | syl6an 684 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁))) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) | 
| 38 | 37 | expr 456 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) | 
| 39 | 38 | com23 86 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) | 
| 40 | 39 | expimpd 453 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑦 ((𝐹‘𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) | 
| 41 | 22, 40 | biimtrid 242 | . . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦 ∈ 𝐽 → (({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) | 
| 42 | 41 | rexlimdv 3152 | . . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦 ∈ 𝐽 ({𝑃} ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) | 
| 43 | 17, 42 | mpd 15 | . . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) | 
| 44 | 15, 43 | jca 511 | . . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅)) | 
| 45 | 44 | ex 412 | . 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) | 
| 46 |  | n0 4352 | . . . 4
⊢ (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁)) | 
| 47 |  | elin 3966 | . . . . . 6
⊢ (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁)) | 
| 48 |  | simprl 770 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ 𝑋) | 
| 49 | 13 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = ∪ 𝐽) | 
| 50 | 48, 49 | sseqtrd 4019 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ⊆ ∪ 𝐽) | 
| 51 | 1 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 ∈ 𝑉) | 
| 52 | 2 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖
{∅})) | 
| 53 |  | simpll 766 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑) | 
| 54 | 53, 3 | sylan 580 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) → ((𝐹‘𝑥) ∩ 𝒫 (𝑣 ∩ 𝑤)) ≠ ∅) | 
| 55 |  | neibastop1.5 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) | 
| 56 | 53, 55 | sylan 580 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → 𝑥 ∈ 𝑣) | 
| 57 |  | neibastop1.6 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) | 
| 58 | 53, 57 | sylan 580 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥 ∈ 𝑋 ∧ 𝑣 ∈ (𝐹‘𝑥))) → ∃𝑡 ∈ (𝐹‘𝑥)∀𝑦 ∈ 𝑡 ((𝐹‘𝑦) ∩ 𝒫 𝑣) ≠ ∅) | 
| 59 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ 𝑋) | 
| 60 |  | simprrl 780 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹‘𝑃)) | 
| 61 |  | simprrr 781 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁) | 
| 62 | 61 | elpwid 4608 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ⊆ 𝑁) | 
| 63 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (𝐹‘𝑛) = (𝐹‘𝑥)) | 
| 64 | 63 | ineq1d 4218 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑏)) | 
| 65 | 64 | cbviunv 5039 | . . . . . . . . . . . . . 14
⊢ ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) | 
| 66 |  | pweq 4613 | . . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧) | 
| 67 | 66 | ineq2d 4219 | . . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑧 → ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ((𝐹‘𝑥) ∩ 𝒫 𝑧)) | 
| 68 | 67 | iuneq2d 5021 | . . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑧 → ∪
𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) | 
| 69 | 65, 68 | eqtrid 2788 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑧 → ∪
𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) | 
| 70 | 69 | cbviunv 5039 | . . . . . . . . . . . 12
⊢ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏) = ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧) | 
| 71 | 70 | mpteq2i 5246 | . . . . . . . . . . 11
⊢ (𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) | 
| 72 |  | rdgeq1 8452 | . . . . . . . . . . 11
⊢ ((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠})) | 
| 73 | 71, 72 | ax-mp 5 | . . . . . . . . . 10
⊢
rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) | 
| 74 | 73 | reseq1i 5992 | . . . . . . . . 9
⊢
(rec((𝑎 ∈ V
↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ ∪ 𝑧 ∈ 𝑎 ∪ 𝑥 ∈ 𝑋 ((𝐹‘𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω) | 
| 75 |  | pweq 4613 | . . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓) | 
| 76 | 75 | ineq2d 4219 | . . . . . . . . . . . . 13
⊢ (𝑔 = 𝑓 → ((𝐹‘𝑤) ∩ 𝒫 𝑔) = ((𝐹‘𝑤) ∩ 𝒫 𝑓)) | 
| 77 | 76 | neeq1d 2999 | . . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅)) | 
| 78 | 77 | cbvrexvw 3237 | . . . . . . . . . . 11
⊢
(∃𝑔 ∈
∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅) | 
| 79 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) | 
| 80 | 79 | ineq1d 4218 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → ((𝐹‘𝑤) ∩ 𝒫 𝑓) = ((𝐹‘𝑦) ∩ 𝒫 𝑓)) | 
| 81 | 80 | neeq1d 2999 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) | 
| 82 | 81 | rexbidv 3178 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) | 
| 83 | 78, 82 | bitrid 283 | . . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ∈ ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅)) | 
| 84 | 83 | cbvrabv 3446 | . . . . . . . . 9
⊢ {𝑤 ∈ 𝑋 ∣ ∃𝑔 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦 ∈ 𝑋 ∣ ∃𝑓 ∈ ∪ ran
(rec((𝑎 ∈ V ↦
∪ 𝑏 ∈ 𝑎 ∪ 𝑛 ∈ 𝑋 ((𝐹‘𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹‘𝑦) ∩ 𝒫 𝑓) ≠ ∅} | 
| 85 | 51, 52, 54, 4, 56, 58, 59, 48, 60, 62, 74, 84 | neibastop2lem 36362 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)) | 
| 86 | 7 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top) | 
| 87 | 59, 49 | eleqtrd 2842 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 ∈ ∪ 𝐽) | 
| 88 | 9 | isneip 23114 | . . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) | 
| 89 | 86, 87, 88 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑁)))) | 
| 90 | 50, 85, 89 | mpbir2and 713 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ (𝑁 ⊆ 𝑋 ∧ (𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) | 
| 91 | 90 | expr 456 | . . . . . 6
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → ((𝑠 ∈ (𝐹‘𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | 
| 92 | 47, 91 | biimtrid 242 | . . . . 5
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | 
| 93 | 92 | exlimdv 1932 | . . . 4
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑠 𝑠 ∈ ((𝐹‘𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | 
| 94 | 46, 93 | biimtrid 242 | . . 3
⊢ (((𝜑 ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | 
| 95 | 94 | expimpd 453 | . 2
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) | 
| 96 | 45, 95 | impbid 212 | 1
⊢ ((𝜑 ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ((𝐹‘𝑃) ∩ 𝒫 𝑁) ≠ ∅))) |