![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdgsucmpt2 | Structured version Visualization version GIF version |
Description: This version of rdgsucmpt 8476 avoids the not-free hypothesis of rdgsucmptf 8473 by using two substitutions instead of one. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
rdgsucmpt2.1 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
rdgsucmpt2.2 | ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) |
rdgsucmpt2.3 | ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
rdgsucmpt2 | ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐵 | |
3 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐷 | |
4 | rdgsucmpt2.1 | . . 3 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
5 | rdgsucmpt2.2 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) | |
6 | 5 | cbvmptv 5262 | . . . 4 ⊢ (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) |
7 | rdgeq1 8456 | . . . 4 ⊢ ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
9 | 4, 8 | eqtr4i 2767 | . 2 ⊢ 𝐹 = rec((𝑦 ∈ V ↦ 𝐸), 𝐴) |
10 | rdgsucmpt2.3 | . 2 ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) | |
11 | 1, 2, 3, 9, 10 | rdgsucmptf 8473 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ↦ cmpt 5232 Oncon0 6389 suc csuc 6391 ‘cfv 6566 reccrdg 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |