MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmpt2 Structured version   Visualization version   GIF version

Theorem rdgsucmpt2 8232
Description: This version of rdgsucmpt 8233 avoids the not-free hypothesis of rdgsucmptf 8230 by using two substitutions instead of one. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
rdgsucmpt2.1 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmpt2.2 (𝑦 = 𝑥𝐸 = 𝐶)
rdgsucmpt2.3 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
Assertion
Ref Expression
rdgsucmpt2 ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rdgsucmpt2
StepHypRef Expression
1 nfcv 2906 . 2 𝑦𝐴
2 nfcv 2906 . 2 𝑦𝐵
3 nfcv 2906 . 2 𝑦𝐷
4 rdgsucmpt2.1 . . 3 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
5 rdgsucmpt2.2 . . . . 5 (𝑦 = 𝑥𝐸 = 𝐶)
65cbvmptv 5183 . . . 4 (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶)
7 rdgeq1 8213 . . . 4 ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴))
86, 7ax-mp 5 . . 3 rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
94, 8eqtr4i 2769 . 2 𝐹 = rec((𝑦 ∈ V ↦ 𝐸), 𝐴)
10 rdgsucmpt2.3 . 2 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
111, 2, 3, 9, 10rdgsucmptf 8230 1 ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  Oncon0 6251  suc csuc 6253  cfv 6418  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator