![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frsucmpt2 | Structured version Visualization version GIF version |
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
frsucmpt2.1 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt2.2 | ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) |
frsucmpt2.3 | ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
frsucmpt2 | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐵 | |
3 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦𝐷 | |
4 | frsucmpt2.1 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
5 | frsucmpt2.2 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) | |
6 | 5 | cbvmptv 5251 | . . . . 5 ⊢ (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) |
7 | rdgeq1 8406 | . . . . 5 ⊢ ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
9 | 8 | reseq1i 5967 | . . 3 ⊢ (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
10 | 4, 9 | eqtr4i 2755 | . 2 ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) |
11 | frsucmpt2.3 | . 2 ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) | |
12 | 1, 2, 3, 10, 11 | frsucmpt 8433 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5221 ↾ cres 5668 suc csuc 6356 ‘cfv 6533 ωcom 7848 reccrdg 8404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 |
This theorem is referenced by: unblem2 9291 unblem3 9292 inf0 9611 trcl 9718 hsmexlem8 10414 wunex2 10728 wuncval2 10737 peano5nni 12211 peano2nn 12220 om2uzsuci 13909 peano5n0s 28077 peano2n0s 28086 neibastop2lem 35701 |
Copyright terms: Public domain | W3C validator |