Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frsucmpt2 | Structured version Visualization version GIF version |
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
frsucmpt2.1 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt2.2 | ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) |
frsucmpt2.3 | ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
frsucmpt2 | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐵 | |
3 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐷 | |
4 | frsucmpt2.1 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
5 | frsucmpt2.2 | . . . . . 6 ⊢ (𝑦 = 𝑥 → 𝐸 = 𝐶) | |
6 | 5 | cbvmptv 5183 | . . . . 5 ⊢ (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) |
7 | rdgeq1 8213 | . . . . 5 ⊢ ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
9 | 8 | reseq1i 5876 | . . 3 ⊢ (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
10 | 4, 9 | eqtr4i 2769 | . 2 ⊢ 𝐹 = (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) |
11 | frsucmpt2.3 | . 2 ⊢ (𝑦 = (𝐹‘𝐵) → 𝐸 = 𝐷) | |
12 | 1, 2, 3, 10, 11 | frsucmpt 8239 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ↾ cres 5582 suc csuc 6253 ‘cfv 6418 ωcom 7687 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: unblem2 8997 unblem3 8998 inf0 9309 trcl 9417 hsmexlem8 10111 wunex2 10425 wuncval2 10434 peano5nni 11906 peano2nn 11915 om2uzsuci 13596 neibastop2lem 34476 |
Copyright terms: Public domain | W3C validator |