MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmpt2 Structured version   Visualization version   GIF version

Theorem frsucmpt2 8479
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation), using double-substitution instead of a bound variable condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt2.1 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt2.2 (𝑦 = 𝑥𝐸 = 𝐶)
frsucmpt2.3 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
Assertion
Ref Expression
frsucmpt2 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem frsucmpt2
StepHypRef Expression
1 nfcv 2903 . 2 𝑦𝐴
2 nfcv 2903 . 2 𝑦𝐵
3 nfcv 2903 . 2 𝑦𝐷
4 frsucmpt2.1 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
5 frsucmpt2.2 . . . . . 6 (𝑦 = 𝑥𝐸 = 𝐶)
65cbvmptv 5261 . . . . 5 (𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶)
7 rdgeq1 8450 . . . . 5 ((𝑦 ∈ V ↦ 𝐸) = (𝑥 ∈ V ↦ 𝐶) → rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴))
86, 7ax-mp 5 . . . 4 rec((𝑦 ∈ V ↦ 𝐸), 𝐴) = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
98reseq1i 5996 . . 3 (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
104, 9eqtr4i 2766 . 2 𝐹 = (rec((𝑦 ∈ V ↦ 𝐸), 𝐴) ↾ ω)
11 frsucmpt2.3 . 2 (𝑦 = (𝐹𝐵) → 𝐸 = 𝐷)
121, 2, 3, 10, 11frsucmpt 8477 1 ((𝐵 ∈ ω ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cmpt 5231  cres 5691  suc csuc 6388  cfv 6563  ωcom 7887  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  unblem2  9327  unblem3  9328  inf0  9659  trcl  9766  hsmexlem8  10462  wunex2  10776  wuncval2  10785  peano5nni  12267  peano2nn  12276  om2uzsuci  13986  noseqp1  28312  noseqind  28313  om2noseqsuc  28318  dfnns2  28377  neibastop2lem  36343
  Copyright terms: Public domain W3C validator