MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgid Structured version   Visualization version   GIF version

Theorem eqgid 18723
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgid.3 0 = (0g𝐺)
Assertion
Ref Expression
eqgid (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)

Proof of Theorem eqgid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqger.r . . . . 5 = (𝐺 ~QG 𝑌)
21releqg 18718 . . . 4 Rel
3 relelec 8501 . . . 4 (Rel → (𝑥 ∈ [ 0 ] 0 𝑥))
42, 3ax-mp 5 . . 3 (𝑥 ∈ [ 0 ] 0 𝑥)
5 subgrcl 18675 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
65adantr 480 . . . . . . . . 9 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
7 eqgid.3 . . . . . . . . . 10 0 = (0g𝐺)
8 eqid 2738 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
97, 8grpinvid 18551 . . . . . . . . 9 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
106, 9syl 17 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
1110oveq1d 7270 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
12 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
13 eqid 2738 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
1412, 13, 7grplid 18524 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
155, 14sylan 579 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
1611, 15eqtrd 2778 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = 𝑥)
1716eleq1d 2823 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌𝑥𝑌))
1817pm5.32da 578 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ (𝑥𝑋𝑥𝑌)))
1912subgss 18671 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
2012, 7grpidcl 18522 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
215, 20syl 17 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 0𝑋)
2212, 8, 13, 1eqgval 18720 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
23 3anass 1093 . . . . . . 7 (( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2422, 23bitrdi 286 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌))))
2524baibd 539 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 0𝑋) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
265, 19, 21, 25syl21anc 834 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2719sseld 3916 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌𝑥𝑋))
2827pm4.71rd 562 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌 ↔ (𝑥𝑋𝑥𝑌)))
2918, 26, 283bitr4d 310 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥𝑥𝑌))
304, 29syl5bb 282 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 𝑥𝑌))
3130eqrdv 2736 1 (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  Rel wrel 5585  cfv 6418  (class class class)co 7255  [cec 8454  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664   ~QG cqg 18666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ec 8458  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-eqg 18669
This theorem is referenced by:  cldsubg  23170  qustgphaus  23182  eqg0el  31459  qsidomlem1  31530  qsidomlem2  31531
  Copyright terms: Public domain W3C validator