MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheni Structured version   Visualization version   GIF version

Theorem hasheni 13914
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hasheni (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))

Proof of Theorem hasheni
StepHypRef Expression
1 simpl 486 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
2 enfii 8864 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
32ancoms 462 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 hashen 13913 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
53, 4sylancom 591 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
61, 5mpbird 260 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
7 relen 8631 . . . . 5 Rel ≈
87brrelex1i 5605 . . . 4 (𝐴𝐵𝐴 ∈ V)
9 enfi 8865 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
109notbid 321 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin))
1110biimpar 481 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐴 ∈ Fin)
12 hashinf 13901 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
138, 11, 12syl2an2r 685 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = +∞)
147brrelex2i 5606 . . . 4 (𝐴𝐵𝐵 ∈ V)
15 hashinf 13901 . . . 4 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1614, 15sylan 583 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1713, 16eqtr4d 2780 . 2 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
186, 17pm2.61dan 813 1 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  Vcvv 3408   class class class wbr 5053  cfv 6380  cen 8623  Fincfn 8626  +∞cpnf 10864  chash 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-hash 13897
This theorem is referenced by:  hashen1  13937  hashfn  13942  hashfz  13994  hashf1lem2  14022  ishashinf  14029  hashgcdeq  16342  ramub2  16567  ram0  16575  odhash  18963  odhash2  18964  odngen  18966  znhash  20523  znunithash  20529  cyggic  20537  birthdaylem2  25835  lgsquadlem1  26261  lgsquadlem2  26262  lgsquadlem3  26263  wlknwwlksneqs  27974  numclwwlk1  28444  dimval  31400  dimvalfi  31401  dimkerim  31422  fedgmul  31426  eulerpart  32061  ballotlemro  32201  ballotlemfrc  32205  ballotlem8  32215  sticksstones5  39828  sticksstones20  39844  rp-isfinite5  40809
  Copyright terms: Public domain W3C validator