Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheni Structured version   Visualization version   GIF version

Theorem hasheni 13706
 Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hasheni (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))

Proof of Theorem hasheni
StepHypRef Expression
1 simpl 486 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
2 enfii 8721 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
32ancoms 462 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 hashen 13705 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
53, 4sylancom 591 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
61, 5mpbird 260 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
7 relen 8499 . . . . 5 Rel ≈
87brrelex1i 5572 . . . 4 (𝐴𝐵𝐴 ∈ V)
9 enfi 8720 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
109notbid 321 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin))
1110biimpar 481 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐴 ∈ Fin)
12 hashinf 13693 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
138, 11, 12syl2an2r 684 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = +∞)
147brrelex2i 5573 . . . 4 (𝐴𝐵𝐵 ∈ V)
15 hashinf 13693 . . . 4 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1614, 15sylan 583 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1713, 16eqtr4d 2836 . 2 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
186, 17pm2.61dan 812 1 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441   class class class wbr 5030  ‘cfv 6324   ≈ cen 8491  Fincfn 8494  +∞cpnf 10663  ♯chash 13688 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-hash 13689 This theorem is referenced by:  hashen1  13729  hashfn  13734  hashfz  13786  hashf1lem2  13812  ishashinf  13819  hashgcdeq  16118  ramub2  16342  ram0  16350  odhash  18694  odhash2  18695  odngen  18697  lsmhash  18826  znhash  20254  znunithash  20260  cyggic  20268  birthdaylem2  25545  lgsquadlem1  25971  lgsquadlem2  25972  lgsquadlem3  25973  wlknwwlksneqs  27683  numclwwlk1  28153  dimval  31101  dimvalfi  31102  dimkerim  31123  fedgmul  31127  eulerpart  31762  ballotlemro  31902  ballotlemfrc  31906  ballotlem8  31916  rp-isfinite5  40240
 Copyright terms: Public domain W3C validator