MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hasheni Structured version   Visualization version   GIF version

Theorem hasheni 14387
Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hasheni (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))

Proof of Theorem hasheni
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
2 enfii 9226 . . . . 5 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
32ancoms 458 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 hashen 14386 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
53, 4sylancom 588 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
61, 5mpbird 257 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
7 relen 8990 . . . . 5 Rel ≈
87brrelex1i 5741 . . . 4 (𝐴𝐵𝐴 ∈ V)
9 enfi 9227 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
109notbid 318 . . . . 5 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ Fin))
1110biimpar 477 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐴 ∈ Fin)
12 hashinf 14374 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → (♯‘𝐴) = +∞)
138, 11, 12syl2an2r 685 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = +∞)
147brrelex2i 5742 . . . 4 (𝐴𝐵𝐵 ∈ V)
15 hashinf 14374 . . . 4 ((𝐵 ∈ V ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1614, 15sylan 580 . . 3 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐵) = +∞)
1713, 16eqtr4d 2780 . 2 ((𝐴𝐵 ∧ ¬ 𝐵 ∈ Fin) → (♯‘𝐴) = (♯‘𝐵))
186, 17pm2.61dan 813 1 (𝐴𝐵 → (♯‘𝐴) = (♯‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   class class class wbr 5143  cfv 6561  cen 8982  Fincfn 8985  +∞cpnf 11292  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-hash 14370
This theorem is referenced by:  hashen1  14409  hashfn  14414  hashfz  14466  hashf1lem2  14495  ishashinf  14502  hashgcdeq  16827  ramub2  17052  ram0  17060  odhash  19592  odhash2  19593  odngen  19595  znhash  21577  znunithash  21583  cyggic  21591  birthdaylem2  26995  lgsquadlem1  27424  lgsquadlem2  27425  lgsquadlem3  27426  wlknwwlksneqs  29910  numclwwlk1  30380  lbslelsp  33648  dimval  33651  dimvalfi  33652  dimkerim  33678  fedgmul  33682  eulerpart  34384  ballotlemro  34525  ballotlemfrc  34529  ballotlem8  34539  sticksstones5  42151  sticksstones20  42167  rp-isfinite5  43530  grtrimap  47915
  Copyright terms: Public domain W3C validator