MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1unielOLD Structured version   Visualization version   GIF version

Theorem en1unielOLD 8980
Description: Obsolete version of en1uniel 8979 as of 24-Sep-2024. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1unielOLD (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1unielOLD
StepHypRef Expression
1 relen 8895 . . . 4 Rel ≈
21brrelex1i 5693 . . 3 (𝑆 ≈ 1o𝑆 ∈ V)
3 uniexg 7682 . . 3 (𝑆 ∈ V → 𝑆 ∈ V)
4 snidg 4625 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
52, 3, 43syl 18 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
6 en1b 8974 . . 3 (𝑆 ≈ 1o𝑆 = { 𝑆})
76biimpi 215 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
85, 7eleqtrrd 2841 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3448  {csn 4591   cuni 4870   class class class wbr 5110  1oc1o 8410  cen 8887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-1o 8417  df-en 8891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator