MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1unielOLD Structured version   Visualization version   GIF version

Theorem en1unielOLD 9094
Description: Obsolete version of en1uniel 9093 as of 24-Sep-2024. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1unielOLD (𝑆 ≈ 1o 𝑆𝑆)

Proof of Theorem en1unielOLD
StepHypRef Expression
1 relen 9008 . . . 4 Rel ≈
21brrelex1i 5756 . . 3 (𝑆 ≈ 1o𝑆 ∈ V)
3 uniexg 7775 . . 3 (𝑆 ∈ V → 𝑆 ∈ V)
4 snidg 4682 . . 3 ( 𝑆 ∈ V → 𝑆 ∈ { 𝑆})
52, 3, 43syl 18 . 2 (𝑆 ≈ 1o 𝑆 ∈ { 𝑆})
6 en1b 9088 . . 3 (𝑆 ≈ 1o𝑆 = { 𝑆})
76biimpi 216 . 2 (𝑆 ≈ 1o𝑆 = { 𝑆})
85, 7eleqtrrd 2847 1 (𝑆 ≈ 1o 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931   class class class wbr 5166  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator