![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1unielOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1uniel 9042 as of 24-Sep-2024. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1unielOLD | ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8958 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5728 | . . 3 ⊢ (𝑆 ≈ 1o → 𝑆 ∈ V) |
3 | uniexg 7737 | . . 3 ⊢ (𝑆 ∈ V → ∪ 𝑆 ∈ V) | |
4 | snidg 4658 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ {∪ 𝑆}) |
6 | en1b 9037 | . . 3 ⊢ (𝑆 ≈ 1o ↔ 𝑆 = {∪ 𝑆}) | |
7 | 6 | biimpi 215 | . 2 ⊢ (𝑆 ≈ 1o → 𝑆 = {∪ 𝑆}) |
8 | 5, 7 | eleqtrrd 2831 | 1 ⊢ (𝑆 ≈ 1o → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 ∪ cuni 4903 class class class wbr 5142 1oc1o 8471 ≈ cen 8950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-1o 8478 df-en 8954 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |