Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwen | Structured version Visualization version GIF version |
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwen | ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8696 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5634 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
3 | pw2eng 8818 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) |
5 | 2onn 8433 | . . . . . 6 ⊢ 2o ∈ ω | |
6 | 5 | elexi 3441 | . . . . 5 ⊢ 2o ∈ V |
7 | 6 | enref 8728 | . . . 4 ⊢ 2o ≈ 2o |
8 | mapen 8877 | . . . 4 ⊢ ((2o ≈ 2o ∧ 𝐴 ≈ 𝐵) → (2o ↑m 𝐴) ≈ (2o ↑m 𝐵)) | |
9 | 7, 8 | mpan 686 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐴) ≈ (2o ↑m 𝐵)) |
10 | 1 | brrelex2i 5635 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
11 | pw2eng 8818 | . . . 4 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
12 | ensym 8744 | . . . 4 ⊢ (𝒫 𝐵 ≈ (2o ↑m 𝐵) → (2o ↑m 𝐵) ≈ 𝒫 𝐵) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐵) ≈ 𝒫 𝐵) |
14 | entr 8747 | . . 3 ⊢ (((2o ↑m 𝐴) ≈ (2o ↑m 𝐵) ∧ (2o ↑m 𝐵) ≈ 𝒫 𝐵) → (2o ↑m 𝐴) ≈ 𝒫 𝐵) | |
15 | 9, 13, 14 | syl2anc 583 | . 2 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐴) ≈ 𝒫 𝐵) |
16 | entr 8747 | . 2 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ (2o ↑m 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
17 | 4, 15, 16 | syl2anc 583 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 (class class class)co 7255 ωcom 7687 2oc2o 8261 ↑m cmap 8573 ≈ cen 8688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 |
This theorem is referenced by: pwfiOLD 9044 dfac12k 9834 pwdjuidm 9878 pwsdompw 9891 ackbij2lem2 9927 engch 10315 gchdomtri 10316 canthp1lem1 10339 gchdjuidm 10355 gchxpidm 10356 gchpwdom 10357 gchhar 10366 inar1 10462 rexpen 15865 enrelmap 41494 enrelmapr 41495 |
Copyright terms: Public domain | W3C validator |