MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwen Structured version   Visualization version   GIF version

Theorem pwen 9189
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
pwen (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)

Proof of Theorem pwen
StepHypRef Expression
1 relen 8989 . . . 4 Rel ≈
21brrelex1i 5745 . . 3 (𝐴𝐵𝐴 ∈ V)
3 pw2eng 9117 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ≈ (2om 𝐴))
42, 3syl 17 . 2 (𝐴𝐵 → 𝒫 𝐴 ≈ (2om 𝐴))
5 2onn 8679 . . . . . 6 2o ∈ ω
65elexi 3501 . . . . 5 2o ∈ V
76enref 9024 . . . 4 2o ≈ 2o
8 mapen 9180 . . . 4 ((2o ≈ 2o𝐴𝐵) → (2om 𝐴) ≈ (2om 𝐵))
97, 8mpan 690 . . 3 (𝐴𝐵 → (2om 𝐴) ≈ (2om 𝐵))
101brrelex2i 5746 . . . 4 (𝐴𝐵𝐵 ∈ V)
11 pw2eng 9117 . . . 4 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
12 ensym 9042 . . . 4 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
1310, 11, 123syl 18 . . 3 (𝐴𝐵 → (2om 𝐵) ≈ 𝒫 𝐵)
14 entr 9045 . . 3 (((2om 𝐴) ≈ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (2om 𝐴) ≈ 𝒫 𝐵)
159, 13, 14syl2anc 584 . 2 (𝐴𝐵 → (2om 𝐴) ≈ 𝒫 𝐵)
16 entr 9045 . 2 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ (2om 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵)
174, 15, 16syl2anc 584 1 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148  (class class class)co 7431  ωcom 7887  2oc2o 8499  m cmap 8865  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985
This theorem is referenced by:  dfac12k  10186  pwdjuidm  10230  pwsdompw  10241  ackbij2lem2  10277  engch  10666  gchdomtri  10667  canthp1lem1  10690  gchdjuidm  10706  gchxpidm  10707  gchpwdom  10708  gchhar  10717  inar1  10813  rexpen  16261  enrelmap  43987  enrelmapr  43988
  Copyright terms: Public domain W3C validator