MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwen Structured version   Visualization version   GIF version

Theorem pwen 8819
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
pwen (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)

Proof of Theorem pwen
StepHypRef Expression
1 relen 8631 . . . 4 Rel ≈
21brrelex1i 5605 . . 3 (𝐴𝐵𝐴 ∈ V)
3 pw2eng 8751 . . 3 (𝐴 ∈ V → 𝒫 𝐴 ≈ (2om 𝐴))
42, 3syl 17 . 2 (𝐴𝐵 → 𝒫 𝐴 ≈ (2om 𝐴))
5 2onn 8368 . . . . . 6 2o ∈ ω
65elexi 3427 . . . . 5 2o ∈ V
76enref 8661 . . . 4 2o ≈ 2o
8 mapen 8810 . . . 4 ((2o ≈ 2o𝐴𝐵) → (2om 𝐴) ≈ (2om 𝐵))
97, 8mpan 690 . . 3 (𝐴𝐵 → (2om 𝐴) ≈ (2om 𝐵))
101brrelex2i 5606 . . . 4 (𝐴𝐵𝐵 ∈ V)
11 pw2eng 8751 . . . 4 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2om 𝐵))
12 ensym 8677 . . . 4 (𝒫 𝐵 ≈ (2om 𝐵) → (2om 𝐵) ≈ 𝒫 𝐵)
1310, 11, 123syl 18 . . 3 (𝐴𝐵 → (2om 𝐵) ≈ 𝒫 𝐵)
14 entr 8680 . . 3 (((2om 𝐴) ≈ (2om 𝐵) ∧ (2om 𝐵) ≈ 𝒫 𝐵) → (2om 𝐴) ≈ 𝒫 𝐵)
159, 13, 14syl2anc 587 . 2 (𝐴𝐵 → (2om 𝐴) ≈ 𝒫 𝐵)
16 entr 8680 . 2 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ (2om 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵)
174, 15, 16syl2anc 587 1 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3408  𝒫 cpw 4513   class class class wbr 5053  (class class class)co 7213  ωcom 7644  2oc2o 8196  m cmap 8508  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-en 8627
This theorem is referenced by:  pwfiOLD  8971  dfac12k  9761  pwdjuidm  9805  pwsdompw  9818  ackbij2lem2  9854  engch  10242  gchdomtri  10243  canthp1lem1  10266  gchdjuidm  10282  gchxpidm  10283  gchpwdom  10284  gchhar  10293  inar1  10389  rexpen  15789  enrelmap  41282  enrelmapr  41283
  Copyright terms: Public domain W3C validator