![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwen | Structured version Visualization version GIF version |
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwen | ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8303 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5451 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
3 | pw2eng 8411 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o ↑𝑚 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ (2o ↑𝑚 𝐴)) |
5 | 2onn 8059 | . . . . . 6 ⊢ 2o ∈ ω | |
6 | 5 | elexi 3428 | . . . . 5 ⊢ 2o ∈ V |
7 | 6 | enref 8331 | . . . 4 ⊢ 2o ≈ 2o |
8 | mapen 8469 | . . . 4 ⊢ ((2o ≈ 2o ∧ 𝐴 ≈ 𝐵) → (2o ↑𝑚 𝐴) ≈ (2o ↑𝑚 𝐵)) | |
9 | 7, 8 | mpan 677 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑𝑚 𝐴) ≈ (2o ↑𝑚 𝐵)) |
10 | 1 | brrelex2i 5452 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
11 | pw2eng 8411 | . . . 4 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ≈ (2o ↑𝑚 𝐵)) | |
12 | ensym 8347 | . . . 4 ⊢ (𝒫 𝐵 ≈ (2o ↑𝑚 𝐵) → (2o ↑𝑚 𝐵) ≈ 𝒫 𝐵) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑𝑚 𝐵) ≈ 𝒫 𝐵) |
14 | entr 8350 | . . 3 ⊢ (((2o ↑𝑚 𝐴) ≈ (2o ↑𝑚 𝐵) ∧ (2o ↑𝑚 𝐵) ≈ 𝒫 𝐵) → (2o ↑𝑚 𝐴) ≈ 𝒫 𝐵) | |
15 | 9, 13, 14 | syl2anc 576 | . 2 ⊢ (𝐴 ≈ 𝐵 → (2o ↑𝑚 𝐴) ≈ 𝒫 𝐵) |
16 | entr 8350 | . 2 ⊢ ((𝒫 𝐴 ≈ (2o ↑𝑚 𝐴) ∧ (2o ↑𝑚 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
17 | 4, 15, 16 | syl2anc 576 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2048 Vcvv 3409 𝒫 cpw 4416 class class class wbr 4923 (class class class)co 6970 ωcom 7390 2oc2o 7891 ↑𝑚 cmap 8198 ≈ cen 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-1o 7897 df-2o 7898 df-er 8081 df-map 8200 df-en 8299 |
This theorem is referenced by: pwfi 8606 dfac12k 9359 pwdjuidm 9407 pwsdompw 9416 ackbij2lem2 9452 engch 9840 gchdomtri 9841 canthp1lem1 9864 gchdjuidm 9880 gchxpidm 9881 gchpwdom 9882 gchhar 9891 inar1 9987 rexpen 15431 enrelmap 39651 enrelmapr 39652 |
Copyright terms: Public domain | W3C validator |