Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwen | Structured version Visualization version GIF version |
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwen | ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8738 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5643 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
3 | pw2eng 8865 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) |
5 | 2onn 8472 | . . . . . 6 ⊢ 2o ∈ ω | |
6 | 5 | elexi 3451 | . . . . 5 ⊢ 2o ∈ V |
7 | 6 | enref 8773 | . . . 4 ⊢ 2o ≈ 2o |
8 | mapen 8928 | . . . 4 ⊢ ((2o ≈ 2o ∧ 𝐴 ≈ 𝐵) → (2o ↑m 𝐴) ≈ (2o ↑m 𝐵)) | |
9 | 7, 8 | mpan 687 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐴) ≈ (2o ↑m 𝐵)) |
10 | 1 | brrelex2i 5644 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
11 | pw2eng 8865 | . . . 4 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
12 | ensym 8789 | . . . 4 ⊢ (𝒫 𝐵 ≈ (2o ↑m 𝐵) → (2o ↑m 𝐵) ≈ 𝒫 𝐵) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐵) ≈ 𝒫 𝐵) |
14 | entr 8792 | . . 3 ⊢ (((2o ↑m 𝐴) ≈ (2o ↑m 𝐵) ∧ (2o ↑m 𝐵) ≈ 𝒫 𝐵) → (2o ↑m 𝐴) ≈ 𝒫 𝐵) | |
15 | 9, 13, 14 | syl2anc 584 | . 2 ⊢ (𝐴 ≈ 𝐵 → (2o ↑m 𝐴) ≈ 𝒫 𝐵) |
16 | entr 8792 | . 2 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ (2o ↑m 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
17 | 4, 15, 16 | syl2anc 584 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 class class class wbr 5074 (class class class)co 7275 ωcom 7712 2oc2o 8291 ↑m cmap 8615 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 |
This theorem is referenced by: pwfiOLD 9114 dfac12k 9903 pwdjuidm 9947 pwsdompw 9960 ackbij2lem2 9996 engch 10384 gchdomtri 10385 canthp1lem1 10408 gchdjuidm 10424 gchxpidm 10425 gchpwdom 10426 gchhar 10435 inar1 10531 rexpen 15937 enrelmap 41605 enrelmapr 41606 |
Copyright terms: Public domain | W3C validator |