![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inffien | Structured version Visualization version GIF version |
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
inffien | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpwfien 10131 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | |
2 | relen 9008 | . . . . . . . . 9 ⊢ Rel ≈ | |
3 | 2 | brrelex1i 5756 | . . . . . . . 8 ⊢ ((𝒫 𝐴 ∩ Fin) ≈ 𝐴 → (𝒫 𝐴 ∩ Fin) ∈ V) |
4 | 1, 3 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V) |
5 | difss 4159 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) | |
6 | ssdomg 9060 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))) | |
7 | 4, 5, 6 | mpisyl 21 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)) |
8 | domentr 9073 | . . . . . 6 ⊢ ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≈ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) | |
9 | 7, 1, 8 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) |
10 | numdom 10107 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) | |
11 | 9, 10 | syldan 590 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) |
12 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) = (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) | |
13 | 12 | fifo 9501 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
15 | fodomnum 10126 | . . . 4 ⊢ (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))) | |
16 | 11, 14, 15 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
17 | domtr 9067 | . . 3 ⊢ (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) | |
18 | 16, 9, 17 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) |
19 | fvex 6933 | . . 3 ⊢ (fi‘𝐴) ∈ V | |
20 | ssfii 9488 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ⊆ (fi‘𝐴)) | |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ⊆ (fi‘𝐴)) |
22 | ssdomg 9060 | . . 3 ⊢ ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴))) | |
23 | 19, 21, 22 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (fi‘𝐴)) |
24 | sbth 9159 | . 2 ⊢ (((fi‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ (fi‘𝐴)) → (fi‘𝐴) ≈ 𝐴) | |
25 | 18, 23, 24 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∩ cint 4970 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 –onto→wfo 6571 ‘cfv 6573 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 Fincfn 9003 ficfi 9479 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-oi 9579 df-card 10008 df-acn 10011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |