MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inffien Structured version   Visualization version   GIF version

Theorem inffien 9949
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
inffien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴)

Proof of Theorem inffien
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 infpwfien 9948 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
2 relen 8869 . . . . . . . . 9 Rel ≈
32brrelex1i 5667 . . . . . . . 8 ((𝒫 𝐴 ∩ Fin) ≈ 𝐴 → (𝒫 𝐴 ∩ Fin) ∈ V)
41, 3syl 17 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
5 difss 4081 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
6 ssdomg 8917 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
74, 5, 6mpisyl 21 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
8 domentr 8930 . . . . . 6 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≈ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴)
97, 1, 8syl2anc 584 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴)
10 numdom 9924 . . . . 5 ((𝐴 ∈ dom card ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
119, 10syldan 591 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
12 eqid 2731 . . . . . 6 (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥) = (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥)
1312fifo 9311 . . . . 5 (𝐴 ∈ dom card → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
1413adantr 480 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
15 fodomnum 9943 . . . 4 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
1611, 14, 15sylc 65 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
17 domtr 8924 . . 3 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴)
1816, 9, 17syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴)
19 fvex 6830 . . 3 (fi‘𝐴) ∈ V
20 ssfii 9298 . . . 4 (𝐴 ∈ dom card → 𝐴 ⊆ (fi‘𝐴))
2120adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ⊆ (fi‘𝐴))
22 ssdomg 8917 . . 3 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
2319, 21, 22mpsyl 68 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (fi‘𝐴))
24 sbth 9005 . 2 (((fi‘𝐴) ≼ 𝐴𝐴 ≼ (fi‘𝐴)) → (fi‘𝐴) ≈ 𝐴)
2518, 23, 24syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cint 4892   class class class wbr 5086  cmpt 5167  dom cdm 5611  ontowfo 6474  cfv 6476  ωcom 7791  cen 8861  cdom 8862  Fincfn 8864  ficfi 9289  cardccrd 9823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-oi 9391  df-card 9827  df-acn 9830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator