| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inffien | Structured version Visualization version GIF version | ||
| Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| inffien | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infpwfien 9964 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | |
| 2 | relen 8884 | . . . . . . . . 9 ⊢ Rel ≈ | |
| 3 | 2 | brrelex1i 5677 | . . . . . . . 8 ⊢ ((𝒫 𝐴 ∩ Fin) ≈ 𝐴 → (𝒫 𝐴 ∩ Fin) ∈ V) |
| 4 | 1, 3 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V) |
| 5 | difss 4085 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) | |
| 6 | ssdomg 8933 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))) | |
| 7 | 4, 5, 6 | mpisyl 21 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)) |
| 8 | domentr 8946 | . . . . . 6 ⊢ ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≈ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) | |
| 9 | 7, 1, 8 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) |
| 10 | numdom 9940 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) | |
| 11 | 9, 10 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card) |
| 12 | eqid 2733 | . . . . . 6 ⊢ (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) = (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥) | |
| 13 | 12 | fifo 9327 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| 15 | fodomnum 9959 | . . . 4 ⊢ (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))) | |
| 16 | 11, 14, 15 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
| 17 | domtr 8940 | . . 3 ⊢ (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) | |
| 18 | 16, 9, 17 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴) |
| 19 | fvex 6844 | . . 3 ⊢ (fi‘𝐴) ∈ V | |
| 20 | ssfii 9314 | . . . 4 ⊢ (𝐴 ∈ dom card → 𝐴 ⊆ (fi‘𝐴)) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ⊆ (fi‘𝐴)) |
| 22 | ssdomg 8933 | . . 3 ⊢ ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴))) | |
| 23 | 19, 21, 22 | mpsyl 68 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (fi‘𝐴)) |
| 24 | sbth 9021 | . 2 ⊢ (((fi‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ (fi‘𝐴)) → (fi‘𝐴) ≈ 𝐴) | |
| 25 | 18, 23, 24 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 {csn 4577 ∩ cint 4899 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5621 –onto→wfo 6487 ‘cfv 6489 ωcom 7805 ≈ cen 8876 ≼ cdom 8877 Fincfn 8879 ficfi 9305 cardccrd 9839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seqom 8376 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-oi 9407 df-card 9843 df-acn 9846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |