MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inffien Structured version   Visualization version   GIF version

Theorem inffien 10016
Description: The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
inffien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴)

Proof of Theorem inffien
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 infpwfien 10015 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
2 relen 8923 . . . . . . . . 9 Rel ≈
32brrelex1i 5694 . . . . . . . 8 ((𝒫 𝐴 ∩ Fin) ≈ 𝐴 → (𝒫 𝐴 ∩ Fin) ∈ V)
41, 3syl 17 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
5 difss 4099 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
6 ssdomg 8971 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
74, 5, 6mpisyl 21 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
8 domentr 8984 . . . . . 6 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≈ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴)
97, 1, 8syl2anc 584 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴)
10 numdom 9991 . . . . 5 ((𝐴 ∈ dom card ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
119, 10syldan 591 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
12 eqid 2729 . . . . . 6 (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥) = (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥)
1312fifo 9383 . . . . 5 (𝐴 ∈ dom card → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
1413adantr 480 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
15 fodomnum 10010 . . . 4 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑥 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑥):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
1611, 14, 15sylc 65 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
17 domtr 8978 . . 3 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴)
1816, 9, 17syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≼ 𝐴)
19 fvex 6871 . . 3 (fi‘𝐴) ∈ V
20 ssfii 9370 . . . 4 (𝐴 ∈ dom card → 𝐴 ⊆ (fi‘𝐴))
2120adantr 480 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ⊆ (fi‘𝐴))
22 ssdomg 8971 . . 3 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
2319, 21, 22mpsyl 68 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (fi‘𝐴))
24 sbth 9061 . 2 (((fi‘𝐴) ≼ 𝐴𝐴 ≼ (fi‘𝐴)) → (fi‘𝐴) ≈ 𝐴)
2518, 23, 24syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cint 4910   class class class wbr 5107  cmpt 5188  dom cdm 5638  ontowfo 6509  cfv 6511  ωcom 7842  cen 8915  cdom 8916  Fincfn 8918  ficfi 9361  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-oi 9463  df-card 9892  df-acn 9895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator