| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslcic | Structured version Visualization version GIF version | ||
| Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslcic.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lbslcic.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslcic | ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ≈ 𝐵) | |
| 2 | bren 8874 | . . 3 ⊢ (𝐼 ≈ 𝐵 ↔ ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) |
| 4 | eqid 2731 | . . . 4 ⊢ (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼)) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 8 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) | |
| 10 | simpl1 1192 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ∈ LMod) | |
| 11 | relen 8869 | . . . . . . 7 ⊢ Rel ≈ | |
| 12 | 11 | brrelex1i 5667 | . . . . . 6 ⊢ (𝐼 ≈ 𝐵 → 𝐼 ∈ V) |
| 13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ∈ V) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐼 ∈ V) |
| 15 | lbslcic.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐹 = (Scalar‘𝑊)) |
| 17 | f1ofo 6765 | . . . . 5 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–onto→𝐵) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–onto→𝐵) |
| 19 | lbslcic.j | . . . . . . . . 9 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 20 | 19 | lbslinds 21765 | . . . . . . . 8 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| 21 | 20 | sseli 3925 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑊)) |
| 22 | 21 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
| 24 | f1of1 6757 | . . . . . 6 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–1-1→𝐵) | |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–1-1→𝐵) |
| 26 | f1linds 21757 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼–1-1→𝐵) → 𝑒 LIndF 𝑊) | |
| 27 | 10, 23, 25, 26 | syl3anc 1373 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒 LIndF 𝑊) |
| 28 | 6, 19, 8 | lbssp 21008 | . . . . . 6 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 29 | 28 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 31 | 4, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30 | indlcim 21772 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊)) |
| 32 | lmimcnv 20996 | . . 3 ⊢ ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → ◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼))) | |
| 33 | brlmici 20998 | . . 3 ⊢ (◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | |
| 34 | 31, 32, 33 | 3syl 18 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| 35 | 3, 34 | exlimddv 1936 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ↦ cmpt 5167 ◡ccnv 5610 –1-1→wf1 6473 –onto→wfo 6474 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ≈ cen 8861 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 Σg cgsu 17339 LModclmod 20788 LSpanclspn 20899 LMIso clmim 20949 ≃𝑚 clmic 20950 LBasisclbs 21003 freeLMod cfrlm 21678 LIndF clindf 21736 LIndSclinds 21737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-nzr 20423 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lmhm 20951 df-lmim 20952 df-lmic 20953 df-lbs 21004 df-sra 21102 df-rgmod 21103 df-dsmm 21664 df-frlm 21679 df-uvc 21715 df-lindf 21738 df-linds 21739 |
| This theorem is referenced by: lmisfree 21774 frlmisfrlm 21780 |
| Copyright terms: Public domain | W3C validator |