MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslcic Structured version   Visualization version   GIF version

Theorem lbslcic 21801
Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lbslcic.f 𝐹 = (Scalar‘𝑊)
lbslcic.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslcic ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))

Proof of Theorem lbslcic
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼𝐵)
2 bren 8969 . . 3 (𝐼𝐵 ↔ ∃𝑒 𝑒:𝐼1-1-onto𝐵)
31, 2sylib 218 . 2 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ∃𝑒 𝑒:𝐼1-1-onto𝐵)
4 eqid 2735 . . . 4 (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼)
5 eqid 2735 . . . 4 (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼))
6 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2735 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2735 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2735 . . . 4 (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒)))
10 simpl1 1192 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊 ∈ LMod)
11 relen 8964 . . . . . . 7 Rel ≈
1211brrelex1i 5710 . . . . . 6 (𝐼𝐵𝐼 ∈ V)
13123ad2ant3 1135 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼 ∈ V)
1413adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐼 ∈ V)
15 lbslcic.f . . . . 5 𝐹 = (Scalar‘𝑊)
1615a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐹 = (Scalar‘𝑊))
17 f1ofo 6825 . . . . 5 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼onto𝐵)
1817adantl 481 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼onto𝐵)
19 lbslcic.j . . . . . . . . 9 𝐽 = (LBasis‘𝑊)
2019lbslinds 21793 . . . . . . . 8 𝐽 ⊆ (LIndS‘𝑊)
2120sseli 3954 . . . . . . 7 (𝐵𝐽𝐵 ∈ (LIndS‘𝑊))
22213ad2ant2 1134 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐵 ∈ (LIndS‘𝑊))
2322adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐵 ∈ (LIndS‘𝑊))
24 f1of1 6817 . . . . . 6 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼1-1𝐵)
2524adantl 481 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼1-1𝐵)
26 f1linds 21785 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼1-1𝐵) → 𝑒 LIndF 𝑊)
2710, 23, 25, 26syl3anc 1373 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒 LIndF 𝑊)
286, 19, 8lbssp 21037 . . . . . 6 (𝐵𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
29283ad2ant2 1134 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
3029adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
314, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30indlcim 21800 . . 3 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊))
32 lmimcnv 21025 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)))
33 brlmici 21027 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
3431, 32, 333syl 18 . 2 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
353, 34exlimddv 1935 1 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119  cmpt 5201  ccnv 5653  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  f cof 7669  cen 8956  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275   Σg cgsu 17454  LModclmod 20817  LSpanclspn 20928   LMIso clmim 20978  𝑚 clmic 20979  LBasisclbs 21032   freeLMod cfrlm 21706   LIndF clindf 21764  LIndSclinds 21765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-nzr 20473  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lmic 20982  df-lbs 21033  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767
This theorem is referenced by:  lmisfree  21802  frlmisfrlm  21808
  Copyright terms: Public domain W3C validator