| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslcic | Structured version Visualization version GIF version | ||
| Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslcic.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lbslcic.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslcic | ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ≈ 𝐵) | |
| 2 | bren 8889 | . . 3 ⊢ (𝐼 ≈ 𝐵 ↔ ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) |
| 4 | eqid 2729 | . . . 4 ⊢ (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 8 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) | |
| 10 | simpl1 1192 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ∈ LMod) | |
| 11 | relen 8884 | . . . . . . 7 ⊢ Rel ≈ | |
| 12 | 11 | brrelex1i 5679 | . . . . . 6 ⊢ (𝐼 ≈ 𝐵 → 𝐼 ∈ V) |
| 13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ∈ V) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐼 ∈ V) |
| 15 | lbslcic.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐹 = (Scalar‘𝑊)) |
| 17 | f1ofo 6775 | . . . . 5 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–onto→𝐵) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–onto→𝐵) |
| 19 | lbslcic.j | . . . . . . . . 9 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 20 | 19 | lbslinds 21758 | . . . . . . . 8 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| 21 | 20 | sseli 3933 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑊)) |
| 22 | 21 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
| 24 | f1of1 6767 | . . . . . 6 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–1-1→𝐵) | |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–1-1→𝐵) |
| 26 | f1linds 21750 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼–1-1→𝐵) → 𝑒 LIndF 𝑊) | |
| 27 | 10, 23, 25, 26 | syl3anc 1373 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒 LIndF 𝑊) |
| 28 | 6, 19, 8 | lbssp 21001 | . . . . . 6 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 29 | 28 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
| 31 | 4, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30 | indlcim 21765 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊)) |
| 32 | lmimcnv 20989 | . . 3 ⊢ ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → ◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼))) | |
| 33 | brlmici 20991 | . . 3 ⊢ (◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | |
| 34 | 31, 32, 33 | 3syl 18 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| 35 | 3, 34 | exlimddv 1935 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5622 –1-1→wf1 6483 –onto→wfo 6484 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ≈ cen 8876 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 Σg cgsu 17362 LModclmod 20781 LSpanclspn 20892 LMIso clmim 20942 ≃𝑚 clmic 20943 LBasisclbs 20996 freeLMod cfrlm 21671 LIndF clindf 21729 LIndSclinds 21730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-nzr 20416 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lmic 20946 df-lbs 20997 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 |
| This theorem is referenced by: lmisfree 21767 frlmisfrlm 21773 |
| Copyright terms: Public domain | W3C validator |