![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbslcic | Structured version Visualization version GIF version |
Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
lbslcic.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lbslcic.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbslcic | ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ≈ 𝐵) | |
2 | bren 8932 | . . 3 ⊢ (𝐼 ≈ 𝐵 ↔ ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ∃𝑒 𝑒:𝐼–1-1-onto→𝐵) |
4 | eqid 2731 | . . . 4 ⊢ (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼) | |
5 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼)) | |
6 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
8 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
9 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) | |
10 | simpl1 1191 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ∈ LMod) | |
11 | relen 8927 | . . . . . . 7 ⊢ Rel ≈ | |
12 | 11 | brrelex1i 5724 | . . . . . 6 ⊢ (𝐼 ≈ 𝐵 → 𝐼 ∈ V) |
13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐼 ∈ V) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐼 ∈ V) |
15 | lbslcic.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐹 = (Scalar‘𝑊)) |
17 | f1ofo 6827 | . . . . 5 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–onto→𝐵) | |
18 | 17 | adantl 482 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–onto→𝐵) |
19 | lbslcic.j | . . . . . . . . 9 ⊢ 𝐽 = (LBasis‘𝑊) | |
20 | 19 | lbslinds 21321 | . . . . . . . 8 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
21 | 20 | sseli 3974 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ∈ (LIndS‘𝑊)) |
22 | 21 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
23 | 22 | adantr 481 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝐵 ∈ (LIndS‘𝑊)) |
24 | f1of1 6819 | . . . . . 6 ⊢ (𝑒:𝐼–1-1-onto→𝐵 → 𝑒:𝐼–1-1→𝐵) | |
25 | 24 | adantl 482 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒:𝐼–1-1→𝐵) |
26 | f1linds 21313 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼–1-1→𝐵) → 𝑒 LIndF 𝑊) | |
27 | 10, 23, 25, 26 | syl3anc 1371 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑒 LIndF 𝑊) |
28 | 6, 19, 8 | lbssp 20639 | . . . . . 6 ⊢ (𝐵 ∈ 𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
29 | 28 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
30 | 29 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊)) |
31 | 4, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30 | indlcim 21328 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊)) |
32 | lmimcnv 20627 | . . 3 ⊢ ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → ◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼))) | |
33 | brlmici 20629 | . . 3 ⊢ (◡(𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥 ∘f ( ·𝑠 ‘𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | |
34 | 31, 32, 33 | 3syl 18 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) ∧ 𝑒:𝐼–1-1-onto→𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
35 | 3, 34 | exlimddv 1938 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3473 class class class wbr 5141 ↦ cmpt 5224 ◡ccnv 5668 –1-1→wf1 6529 –onto→wfo 6530 –1-1-onto→wf1o 6531 ‘cfv 6532 (class class class)co 7393 ∘f cof 7651 ≈ cen 8919 Basecbs 17126 Scalarcsca 17182 ·𝑠 cvsca 17183 Σg cgsu 17368 LModclmod 20420 LSpanclspn 20531 LMIso clmim 20580 ≃𝑚 clmic 20581 LBasisclbs 20634 freeLMod cfrlm 21234 LIndF clindf 21292 LIndSclinds 21293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17369 df-gsum 17370 df-prds 17375 df-pws 17377 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-mulg 18923 df-subg 18975 df-ghm 19056 df-cntz 19147 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-nzr 20242 df-subrg 20310 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lmhm 20582 df-lmim 20583 df-lmic 20584 df-lbs 20635 df-sra 20734 df-rgmod 20735 df-dsmm 21220 df-frlm 21235 df-uvc 21271 df-lindf 21294 df-linds 21295 |
This theorem is referenced by: lmisfree 21330 frlmisfrlm 21336 |
Copyright terms: Public domain | W3C validator |