MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslcic Structured version   Visualization version   GIF version

Theorem lbslcic 21329
Description: A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Hypotheses
Ref Expression
lbslcic.f 𝐹 = (Scalar‘𝑊)
lbslcic.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslcic ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))

Proof of Theorem lbslcic
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼𝐵)
2 bren 8932 . . 3 (𝐼𝐵 ↔ ∃𝑒 𝑒:𝐼1-1-onto𝐵)
31, 2sylib 217 . 2 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ∃𝑒 𝑒:𝐼1-1-onto𝐵)
4 eqid 2731 . . . 4 (𝐹 freeLMod 𝐼) = (𝐹 freeLMod 𝐼)
5 eqid 2731 . . . 4 (Base‘(𝐹 freeLMod 𝐼)) = (Base‘(𝐹 freeLMod 𝐼))
6 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 eqid 2731 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2731 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2731 . . . 4 (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) = (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒)))
10 simpl1 1191 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊 ∈ LMod)
11 relen 8927 . . . . . . 7 Rel ≈
1211brrelex1i 5724 . . . . . 6 (𝐼𝐵𝐼 ∈ V)
13123ad2ant3 1135 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐼 ∈ V)
1413adantr 481 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐼 ∈ V)
15 lbslcic.f . . . . 5 𝐹 = (Scalar‘𝑊)
1615a1i 11 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐹 = (Scalar‘𝑊))
17 f1ofo 6827 . . . . 5 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼onto𝐵)
1817adantl 482 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼onto𝐵)
19 lbslcic.j . . . . . . . . 9 𝐽 = (LBasis‘𝑊)
2019lbslinds 21321 . . . . . . . 8 𝐽 ⊆ (LIndS‘𝑊)
2120sseli 3974 . . . . . . 7 (𝐵𝐽𝐵 ∈ (LIndS‘𝑊))
22213ad2ant2 1134 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝐵 ∈ (LIndS‘𝑊))
2322adantr 481 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝐵 ∈ (LIndS‘𝑊))
24 f1of1 6819 . . . . . 6 (𝑒:𝐼1-1-onto𝐵𝑒:𝐼1-1𝐵)
2524adantl 482 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒:𝐼1-1𝐵)
26 f1linds 21313 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ 𝑒:𝐼1-1𝐵) → 𝑒 LIndF 𝑊)
2710, 23, 25, 26syl3anc 1371 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑒 LIndF 𝑊)
286, 19, 8lbssp 20639 . . . . . 6 (𝐵𝐽 → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
29283ad2ant2 1134 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
3029adantr 481 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → ((LSpan‘𝑊)‘𝐵) = (Base‘𝑊))
314, 5, 6, 7, 8, 9, 10, 14, 16, 18, 27, 30indlcim 21328 . . 3 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊))
32 lmimcnv 20627 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ ((𝐹 freeLMod 𝐼) LMIso 𝑊) → (𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)))
33 brlmici 20629 . . 3 ((𝑥 ∈ (Base‘(𝐹 freeLMod 𝐼)) ↦ (𝑊 Σg (𝑥f ( ·𝑠𝑊)𝑒))) ∈ (𝑊 LMIso (𝐹 freeLMod 𝐼)) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
3431, 32, 333syl 18 . 2 (((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) ∧ 𝑒:𝐼1-1-onto𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
353, 34exlimddv 1938 1 ((𝑊 ∈ LMod ∧ 𝐵𝐽𝐼𝐵) → 𝑊𝑚 (𝐹 freeLMod 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3473   class class class wbr 5141  cmpt 5224  ccnv 5668  1-1wf1 6529  ontowfo 6530  1-1-ontowf1o 6531  cfv 6532  (class class class)co 7393  f cof 7651  cen 8919  Basecbs 17126  Scalarcsca 17182   ·𝑠 cvsca 17183   Σg cgsu 17368  LModclmod 20420  LSpanclspn 20531   LMIso clmim 20580  𝑚 clmic 20581  LBasisclbs 20634   freeLMod cfrlm 21234   LIndF clindf 21292  LIndSclinds 21293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17369  df-gsum 17370  df-prds 17375  df-pws 17377  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-subg 18975  df-ghm 19056  df-cntz 19147  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-nzr 20242  df-subrg 20310  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lmhm 20582  df-lmim 20583  df-lmic 20584  df-lbs 20635  df-sra 20734  df-rgmod 20735  df-dsmm 21220  df-frlm 21235  df-uvc 21271  df-lindf 21294  df-linds 21295
This theorem is referenced by:  lmisfree  21330  frlmisfrlm  21336
  Copyright terms: Public domain W3C validator