![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpen | Structured version Visualization version GIF version |
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 9008 | . . . . 5 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5756 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
3 | endom 9039 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
4 | xpdom1g 9135 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
5 | 2, 3, 4 | syl2anr 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
6 | 1 | brrelex2i 5757 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | endom 9039 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷) | |
8 | xpdom2g 9134 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ≼ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) | |
9 | 6, 7, 8 | syl2an 595 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) |
10 | domtr 9067 | . . 3 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) | |
11 | 5, 9, 10 | syl2anc 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) |
12 | 1 | brrelex2i 5757 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
13 | ensym 9063 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
14 | endom 9039 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
16 | xpdom1g 9135 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 𝐵 ≼ 𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) | |
17 | 12, 15, 16 | syl2anr 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) |
18 | 1 | brrelex1i 5756 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
19 | ensym 9063 | . . . . 5 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶) | |
20 | endom 9039 | . . . . 5 ⊢ (𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶) |
22 | xpdom2g 9134 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐷 ≼ 𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) | |
23 | 18, 21, 22 | syl2an 595 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) |
24 | domtr 9067 | . . 3 ⊢ (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) | |
25 | 17, 23, 24 | syl2anc 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) |
26 | sbth 9159 | . 2 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | |
27 | 11, 25, 26 | syl2anc 583 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 × cxp 5698 ≈ cen 9000 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 |
This theorem is referenced by: map2xp 9213 unxpdom2 9317 sucxpdom 9318 xpnum 10020 infxpenlem 10082 infxpidm2 10086 xpdjuen 10249 mapdjuen 10250 pwdjuen 10251 djuxpdom 10255 ackbij1lem5 10292 canthp1lem1 10721 xpnnen 16259 qnnen 16261 rexpen 16276 met2ndci 24556 re2ndc 24842 dyadmbl 25654 opnmblALT 25657 mbfimaopnlem 25709 mblfinlem1 37617 |
Copyright terms: Public domain | W3C validator |