MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpen Structured version   Visualization version   GIF version

Theorem xpen 9087
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
StepHypRef Expression
1 relen 8891 . . . . 5 Rel ≈
21brrelex1i 5689 . . . 4 (𝐶𝐷𝐶 ∈ V)
3 endom 8922 . . . 4 (𝐴𝐵𝐴𝐵)
4 xpdom1g 9016 . . . 4 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
52, 3, 4syl2anr 598 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
61brrelex2i 5690 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 endom 8922 . . . 4 (𝐶𝐷𝐶𝐷)
8 xpdom2g 9015 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
96, 7, 8syl2an 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
10 domtr 8950 . . 3 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
115, 9, 10syl2anc 585 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
121brrelex2i 5690 . . . 4 (𝐶𝐷𝐷 ∈ V)
13 ensym 8946 . . . . 5 (𝐴𝐵𝐵𝐴)
14 endom 8922 . . . . 5 (𝐵𝐴𝐵𝐴)
1513, 14syl 17 . . . 4 (𝐴𝐵𝐵𝐴)
16 xpdom1g 9016 . . . 4 ((𝐷 ∈ V ∧ 𝐵𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
1712, 15, 16syl2anr 598 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
181brrelex1i 5689 . . . 4 (𝐴𝐵𝐴 ∈ V)
19 ensym 8946 . . . . 5 (𝐶𝐷𝐷𝐶)
20 endom 8922 . . . . 5 (𝐷𝐶𝐷𝐶)
2119, 20syl 17 . . . 4 (𝐶𝐷𝐷𝐶)
22 xpdom2g 9015 . . . 4 ((𝐴 ∈ V ∧ 𝐷𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
2318, 21, 22syl2an 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
24 domtr 8950 . . 3 (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
2517, 23, 24syl2anc 585 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
26 sbth 9040 . 2 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2711, 25, 26syl2anc 585 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  Vcvv 3444   class class class wbr 5106   × cxp 5632  cen 8883  cdom 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-1st 7922  df-2nd 7923  df-er 8651  df-en 8887  df-dom 8888
This theorem is referenced by:  map2xp  9094  unxpdom2  9201  sucxpdom  9202  xpnum  9892  infxpenlem  9954  infxpidm2  9958  xpdjuen  10120  mapdjuen  10121  pwdjuen  10122  djuxpdom  10126  ackbij1lem5  10165  canthp1lem1  10593  xpnnen  16098  qnnen  16100  rexpen  16115  met2ndci  23894  re2ndc  24180  dyadmbl  24980  opnmblALT  24983  mbfimaopnlem  25035  mblfinlem1  36161
  Copyright terms: Public domain W3C validator