![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpen | Structured version Visualization version GIF version |
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8940 | . . . . 5 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5730 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
3 | endom 8971 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
4 | xpdom1g 9065 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
6 | 1 | brrelex2i 5731 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | endom 8971 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷) | |
8 | xpdom2g 9064 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ≼ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) | |
9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) |
10 | domtr 8999 | . . 3 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) | |
11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) |
12 | 1 | brrelex2i 5731 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
13 | ensym 8995 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
14 | endom 8971 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
16 | xpdom1g 9065 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 𝐵 ≼ 𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) | |
17 | 12, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) |
18 | 1 | brrelex1i 5730 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
19 | ensym 8995 | . . . . 5 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶) | |
20 | endom 8971 | . . . . 5 ⊢ (𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶) |
22 | xpdom2g 9064 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐷 ≼ 𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) | |
23 | 18, 21, 22 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) |
24 | domtr 8999 | . . 3 ⊢ (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) | |
25 | 17, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) |
26 | sbth 9089 | . 2 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | |
27 | 11, 25, 26 | syl2anc 584 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 class class class wbr 5147 × cxp 5673 ≈ cen 8932 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 |
This theorem is referenced by: map2xp 9143 unxpdom2 9250 sucxpdom 9251 xpnum 9942 infxpenlem 10004 infxpidm2 10008 xpdjuen 10170 mapdjuen 10171 pwdjuen 10172 djuxpdom 10176 ackbij1lem5 10215 canthp1lem1 10643 xpnnen 16150 qnnen 16152 rexpen 16167 met2ndci 24022 re2ndc 24308 dyadmbl 25108 opnmblALT 25111 mbfimaopnlem 25163 mblfinlem1 36513 |
Copyright terms: Public domain | W3C validator |