MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpen Structured version   Visualization version   GIF version

Theorem xpen 9064
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
StepHypRef Expression
1 relen 8884 . . . . 5 Rel ≈
21brrelex1i 5679 . . . 4 (𝐶𝐷𝐶 ∈ V)
3 endom 8911 . . . 4 (𝐴𝐵𝐴𝐵)
4 xpdom1g 8998 . . . 4 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
52, 3, 4syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
61brrelex2i 5680 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 endom 8911 . . . 4 (𝐶𝐷𝐶𝐷)
8 xpdom2g 8997 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
96, 7, 8syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
10 domtr 8939 . . 3 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
115, 9, 10syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
121brrelex2i 5680 . . . 4 (𝐶𝐷𝐷 ∈ V)
13 ensym 8935 . . . . 5 (𝐴𝐵𝐵𝐴)
14 endom 8911 . . . . 5 (𝐵𝐴𝐵𝐴)
1513, 14syl 17 . . . 4 (𝐴𝐵𝐵𝐴)
16 xpdom1g 8998 . . . 4 ((𝐷 ∈ V ∧ 𝐵𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
1712, 15, 16syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
181brrelex1i 5679 . . . 4 (𝐴𝐵𝐴 ∈ V)
19 ensym 8935 . . . . 5 (𝐶𝐷𝐷𝐶)
20 endom 8911 . . . . 5 (𝐷𝐶𝐷𝐶)
2119, 20syl 17 . . . 4 (𝐶𝐷𝐷𝐶)
22 xpdom2g 8997 . . . 4 ((𝐴 ∈ V ∧ 𝐷𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
2318, 21, 22syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
24 domtr 8939 . . 3 (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
2517, 23, 24syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
26 sbth 9021 . 2 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2711, 25, 26syl2anc 584 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3438   class class class wbr 5095   × cxp 5621  cen 8876  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881
This theorem is referenced by:  map2xp  9071  unxpdom2  9159  sucxpdom  9160  xpnum  9866  infxpenlem  9926  infxpidm2  9930  xpdjuen  10093  mapdjuen  10094  pwdjuen  10095  djuxpdom  10099  ackbij1lem5  10136  canthp1lem1  10565  xpnnen  16139  qnnen  16141  rexpen  16156  met2ndci  24427  re2ndc  24706  dyadmbl  25518  opnmblALT  25521  mbfimaopnlem  25573  mblfinlem1  37656
  Copyright terms: Public domain W3C validator