MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpen Structured version   Visualization version   GIF version

Theorem xpen 8876
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
StepHypRef Expression
1 relen 8696 . . . . 5 Rel ≈
21brrelex1i 5634 . . . 4 (𝐶𝐷𝐶 ∈ V)
3 endom 8722 . . . 4 (𝐴𝐵𝐴𝐵)
4 xpdom1g 8809 . . . 4 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
52, 3, 4syl2anr 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
61brrelex2i 5635 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 endom 8722 . . . 4 (𝐶𝐷𝐶𝐷)
8 xpdom2g 8808 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
96, 7, 8syl2an 595 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
10 domtr 8748 . . 3 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
115, 9, 10syl2anc 583 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
121brrelex2i 5635 . . . 4 (𝐶𝐷𝐷 ∈ V)
13 ensym 8744 . . . . 5 (𝐴𝐵𝐵𝐴)
14 endom 8722 . . . . 5 (𝐵𝐴𝐵𝐴)
1513, 14syl 17 . . . 4 (𝐴𝐵𝐵𝐴)
16 xpdom1g 8809 . . . 4 ((𝐷 ∈ V ∧ 𝐵𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
1712, 15, 16syl2anr 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
181brrelex1i 5634 . . . 4 (𝐴𝐵𝐴 ∈ V)
19 ensym 8744 . . . . 5 (𝐶𝐷𝐷𝐶)
20 endom 8722 . . . . 5 (𝐷𝐶𝐷𝐶)
2119, 20syl 17 . . . 4 (𝐶𝐷𝐷𝐶)
22 xpdom2g 8808 . . . 4 ((𝐴 ∈ V ∧ 𝐷𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
2318, 21, 22syl2an 595 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
24 domtr 8748 . . 3 (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
2517, 23, 24syl2anc 583 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
26 sbth 8833 . 2 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2711, 25, 26syl2anc 583 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422   class class class wbr 5070   × cxp 5578  cen 8688  cdom 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693
This theorem is referenced by:  map2xp  8883  unxpdom2  8960  sucxpdom  8961  xpnum  9640  infxpenlem  9700  infxpidm2  9704  xpdjuen  9866  mapdjuen  9867  pwdjuen  9868  djuxpdom  9872  ackbij1lem5  9911  canthp1lem1  10339  xpnnen  15848  qnnen  15850  rexpen  15865  met2ndci  23584  re2ndc  23870  dyadmbl  24669  opnmblALT  24672  mbfimaopnlem  24724  mblfinlem1  35741
  Copyright terms: Public domain W3C validator