Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpen | Structured version Visualization version GIF version |
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
xpen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8631 | . . . . 5 ⊢ Rel ≈ | |
2 | 1 | brrelex1i 5605 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
3 | endom 8655 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
4 | xpdom1g 8742 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
5 | 2, 3, 4 | syl2anr 600 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
6 | 1 | brrelex2i 5606 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | endom 8655 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷) | |
8 | xpdom2g 8741 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ≼ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) | |
9 | 6, 7, 8 | syl2an 599 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) |
10 | domtr 8681 | . . 3 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) | |
11 | 5, 9, 10 | syl2anc 587 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) |
12 | 1 | brrelex2i 5606 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
13 | ensym 8677 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
14 | endom 8655 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
16 | xpdom1g 8742 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 𝐵 ≼ 𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) | |
17 | 12, 15, 16 | syl2anr 600 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) |
18 | 1 | brrelex1i 5605 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
19 | ensym 8677 | . . . . 5 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶) | |
20 | endom 8655 | . . . . 5 ⊢ (𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶) |
22 | xpdom2g 8741 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐷 ≼ 𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) | |
23 | 18, 21, 22 | syl2an 599 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) |
24 | domtr 8681 | . . 3 ⊢ (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) | |
25 | 17, 23, 24 | syl2anc 587 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) |
26 | sbth 8766 | . 2 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | |
27 | 11, 25, 26 | syl2anc 587 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 Vcvv 3408 class class class wbr 5053 × cxp 5549 ≈ cen 8623 ≼ cdom 8624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 |
This theorem is referenced by: map2xp 8816 unxpdom2 8886 sucxpdom 8887 xpnum 9567 infxpenlem 9627 infxpidm2 9631 xpdjuen 9793 mapdjuen 9794 pwdjuen 9795 djuxpdom 9799 ackbij1lem5 9838 canthp1lem1 10266 xpnnen 15772 qnnen 15774 rexpen 15789 met2ndci 23420 re2ndc 23698 dyadmbl 24497 opnmblALT 24500 mbfimaopnlem 24552 mblfinlem1 35551 |
Copyright terms: Public domain | W3C validator |