| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8869 | . . . . 5 ⊢ Rel ≈ | |
| 2 | 1 | brrelex1i 5667 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
| 3 | endom 8896 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 4 | xpdom1g 8982 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| 6 | 1 | brrelex2i 5668 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
| 7 | endom 8896 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷) | |
| 8 | xpdom2g 8981 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ≼ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) |
| 10 | domtr 8924 | . . 3 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) |
| 12 | 1 | brrelex2i 5668 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
| 13 | ensym 8920 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 14 | endom 8896 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
| 16 | xpdom1g 8982 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 𝐵 ≼ 𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) | |
| 17 | 12, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) |
| 18 | 1 | brrelex1i 5667 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
| 19 | ensym 8920 | . . . . 5 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶) | |
| 20 | endom 8896 | . . . . 5 ⊢ (𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶) |
| 22 | xpdom2g 8981 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐷 ≼ 𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) | |
| 23 | 18, 21, 22 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) |
| 24 | domtr 8924 | . . 3 ⊢ (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) | |
| 25 | 17, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) |
| 26 | sbth 9005 | . 2 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | |
| 27 | 11, 25, 26 | syl2anc 584 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 × cxp 5609 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 |
| This theorem is referenced by: map2xp 9055 unxpdom2 9139 sucxpdom 9140 xpnum 9839 infxpenlem 9899 infxpidm2 9903 xpdjuen 10066 mapdjuen 10067 pwdjuen 10068 djuxpdom 10072 ackbij1lem5 10109 canthp1lem1 10538 xpnnen 16115 qnnen 16117 rexpen 16132 met2ndci 24432 re2ndc 24711 dyadmbl 25523 opnmblALT 25526 mbfimaopnlem 25578 mblfinlem1 37697 |
| Copyright terms: Public domain | W3C validator |