| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpen | Structured version Visualization version GIF version | ||
| Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpen | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8990 | . . . . 5 ⊢ Rel ≈ | |
| 2 | 1 | brrelex1i 5741 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ∈ V) |
| 3 | endom 9019 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 4 | xpdom1g 9109 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐴 ≼ 𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶)) |
| 6 | 1 | brrelex2i 5742 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
| 7 | endom 9019 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐶 ≼ 𝐷) | |
| 8 | xpdom2g 9108 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ≼ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) |
| 10 | domtr 9047 | . . 3 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷)) |
| 12 | 1 | brrelex2i 5742 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
| 13 | ensym 9043 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 14 | endom 9019 | . . . . 5 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≼ 𝐴) |
| 16 | xpdom1g 9109 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 𝐵 ≼ 𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) | |
| 17 | 12, 15, 16 | syl2anr 597 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷)) |
| 18 | 1 | brrelex1i 5741 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
| 19 | ensym 9043 | . . . . 5 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≈ 𝐶) | |
| 20 | endom 9019 | . . . . 5 ⊢ (𝐷 ≈ 𝐶 → 𝐷 ≼ 𝐶) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ≼ 𝐶) |
| 22 | xpdom2g 9108 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐷 ≼ 𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) | |
| 23 | 18, 21, 22 | syl2an 596 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) |
| 24 | domtr 9047 | . . 3 ⊢ (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) | |
| 25 | 17, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) |
| 26 | sbth 9133 | . 2 ⊢ (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | |
| 27 | 11, 25, 26 | syl2anc 584 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 × cxp 5683 ≈ cen 8982 ≼ cdom 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 |
| This theorem is referenced by: map2xp 9187 unxpdom2 9290 sucxpdom 9291 xpnum 9991 infxpenlem 10053 infxpidm2 10057 xpdjuen 10220 mapdjuen 10221 pwdjuen 10222 djuxpdom 10226 ackbij1lem5 10263 canthp1lem1 10692 xpnnen 16247 qnnen 16249 rexpen 16264 met2ndci 24535 re2ndc 24822 dyadmbl 25635 opnmblALT 25638 mbfimaopnlem 25690 mblfinlem1 37664 |
| Copyright terms: Public domain | W3C validator |