MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpen Structured version   Visualization version   GIF version

Theorem xpen 9154
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
StepHypRef Expression
1 relen 8964 . . . . 5 Rel ≈
21brrelex1i 5710 . . . 4 (𝐶𝐷𝐶 ∈ V)
3 endom 8993 . . . 4 (𝐴𝐵𝐴𝐵)
4 xpdom1g 9083 . . . 4 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
52, 3, 4syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
61brrelex2i 5711 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 endom 8993 . . . 4 (𝐶𝐷𝐶𝐷)
8 xpdom2g 9082 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
96, 7, 8syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
10 domtr 9021 . . 3 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
115, 9, 10syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
121brrelex2i 5711 . . . 4 (𝐶𝐷𝐷 ∈ V)
13 ensym 9017 . . . . 5 (𝐴𝐵𝐵𝐴)
14 endom 8993 . . . . 5 (𝐵𝐴𝐵𝐴)
1513, 14syl 17 . . . 4 (𝐴𝐵𝐵𝐴)
16 xpdom1g 9083 . . . 4 ((𝐷 ∈ V ∧ 𝐵𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
1712, 15, 16syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
181brrelex1i 5710 . . . 4 (𝐴𝐵𝐴 ∈ V)
19 ensym 9017 . . . . 5 (𝐶𝐷𝐷𝐶)
20 endom 8993 . . . . 5 (𝐷𝐶𝐷𝐶)
2119, 20syl 17 . . . 4 (𝐶𝐷𝐷𝐶)
22 xpdom2g 9082 . . . 4 ((𝐴 ∈ V ∧ 𝐷𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
2318, 21, 22syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
24 domtr 9021 . . 3 (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
2517, 23, 24syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
26 sbth 9107 . 2 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2711, 25, 26syl2anc 584 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3459   class class class wbr 5119   × cxp 5652  cen 8956  cdom 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961
This theorem is referenced by:  map2xp  9161  unxpdom2  9262  sucxpdom  9263  xpnum  9965  infxpenlem  10027  infxpidm2  10031  xpdjuen  10194  mapdjuen  10195  pwdjuen  10196  djuxpdom  10200  ackbij1lem5  10237  canthp1lem1  10666  xpnnen  16229  qnnen  16231  rexpen  16246  met2ndci  24461  re2ndc  24740  dyadmbl  25553  opnmblALT  25556  mbfimaopnlem  25608  mblfinlem1  37681
  Copyright terms: Public domain W3C validator