MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpen Structured version   Visualization version   GIF version

Theorem xpen 9136
Description: Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpen ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))

Proof of Theorem xpen
StepHypRef Expression
1 relen 8940 . . . . 5 Rel ≈
21brrelex1i 5730 . . . 4 (𝐶𝐷𝐶 ∈ V)
3 endom 8971 . . . 4 (𝐴𝐵𝐴𝐵)
4 xpdom1g 9065 . . . 4 ((𝐶 ∈ V ∧ 𝐴𝐵) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
52, 3, 4syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐶))
61brrelex2i 5731 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 endom 8971 . . . 4 (𝐶𝐷𝐶𝐷)
8 xpdom2g 9064 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
96, 7, 8syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐶) ≼ (𝐵 × 𝐷))
10 domtr 8999 . . 3 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ≼ (𝐵 × 𝐷)) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
115, 9, 10syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≼ (𝐵 × 𝐷))
121brrelex2i 5731 . . . 4 (𝐶𝐷𝐷 ∈ V)
13 ensym 8995 . . . . 5 (𝐴𝐵𝐵𝐴)
14 endom 8971 . . . . 5 (𝐵𝐴𝐵𝐴)
1513, 14syl 17 . . . 4 (𝐴𝐵𝐵𝐴)
16 xpdom1g 9065 . . . 4 ((𝐷 ∈ V ∧ 𝐵𝐴) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
1712, 15, 16syl2anr 597 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐷))
181brrelex1i 5730 . . . 4 (𝐴𝐵𝐴 ∈ V)
19 ensym 8995 . . . . 5 (𝐶𝐷𝐷𝐶)
20 endom 8971 . . . . 5 (𝐷𝐶𝐷𝐶)
2119, 20syl 17 . . . 4 (𝐶𝐷𝐷𝐶)
22 xpdom2g 9064 . . . 4 ((𝐴 ∈ V ∧ 𝐷𝐶) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
2318, 21, 22syl2an 596 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐷) ≼ (𝐴 × 𝐶))
24 domtr 8999 . . 3 (((𝐵 × 𝐷) ≼ (𝐴 × 𝐷) ∧ (𝐴 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
2517, 23, 24syl2anc 584 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 × 𝐷) ≼ (𝐴 × 𝐶))
26 sbth 9089 . 2 (((𝐴 × 𝐶) ≼ (𝐵 × 𝐷) ∧ (𝐵 × 𝐷) ≼ (𝐴 × 𝐶)) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
2711, 25, 26syl2anc 584 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474   class class class wbr 5147   × cxp 5673  cen 8932  cdom 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937
This theorem is referenced by:  map2xp  9143  unxpdom2  9250  sucxpdom  9251  xpnum  9942  infxpenlem  10004  infxpidm2  10008  xpdjuen  10170  mapdjuen  10171  pwdjuen  10172  djuxpdom  10176  ackbij1lem5  10215  canthp1lem1  10643  xpnnen  16150  qnnen  16152  rexpen  16167  met2ndci  24022  re2ndc  24308  dyadmbl  25108  opnmblALT  25111  mbfimaopnlem  25163  mblfinlem1  36513
  Copyright terms: Public domain W3C validator