MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuenun Structured version   Visualization version   GIF version

Theorem djuenun 10209
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 10208 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
213adant3 1131 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
3 relen 8989 . . . 4 Rel ≈
43brrelex2i 5746 . . 3 (𝐴𝐵𝐵 ∈ V)
53brrelex2i 5746 . . 3 (𝐶𝐷𝐷 ∈ V)
6 id 22 . . 3 ((𝐵𝐷) = ∅ → (𝐵𝐷) = ∅)
7 endjudisj 10207 . . 3 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
84, 5, 6, 7syl3an 1159 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
9 entr 9045 . 2 (((𝐴𝐶) ≈ (𝐵𝐷) ∧ (𝐵𝐷) ≈ (𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
102, 8, 9syl2anc 584 1 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  cin 3962  c0 4339   class class class wbr 5148  cen 8981  cdju 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014  df-1o 8505  df-er 8744  df-en 8985  df-dju 9939
This theorem is referenced by:  dju1en  10210  djucomen  10216  djuassen  10217  xpdjuen  10218  onadju  10232  pwxpndom2  10703
  Copyright terms: Public domain W3C validator