MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuenun Structured version   Visualization version   GIF version

Theorem djuenun 10131
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 10130 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
213adant3 1132 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
3 relen 8926 . . . 4 Rel ≈
43brrelex2i 5698 . . 3 (𝐴𝐵𝐵 ∈ V)
53brrelex2i 5698 . . 3 (𝐶𝐷𝐷 ∈ V)
6 id 22 . . 3 ((𝐵𝐷) = ∅ → (𝐵𝐷) = ∅)
7 endjudisj 10129 . . 3 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
84, 5, 6, 7syl3an 1160 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
9 entr 8980 . 2 (((𝐴𝐶) ≈ (𝐵𝐷) ∧ (𝐵𝐷) ≈ (𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
102, 8, 9syl2anc 584 1 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  cin 3916  c0 4299   class class class wbr 5110  cen 8918  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-1o 8437  df-er 8674  df-en 8922  df-dju 9861
This theorem is referenced by:  dju1en  10132  djucomen  10138  djuassen  10139  xpdjuen  10140  onadju  10154  pwxpndom2  10625
  Copyright terms: Public domain W3C validator