MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuenun Structured version   Visualization version   GIF version

Theorem djuenun 10162
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 10161 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
213adant3 1129 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
3 relen 8941 . . . 4 Rel ≈
43brrelex2i 5724 . . 3 (𝐴𝐵𝐵 ∈ V)
53brrelex2i 5724 . . 3 (𝐶𝐷𝐷 ∈ V)
6 id 22 . . 3 ((𝐵𝐷) = ∅ → (𝐵𝐷) = ∅)
7 endjudisj 10160 . . 3 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
84, 5, 6, 7syl3an 1157 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
9 entr 8999 . 2 (((𝐴𝐶) ≈ (𝐵𝐷) ∧ (𝐵𝐷) ≈ (𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
102, 8, 9syl2anc 583 1 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3466  cun 3939  cin 3940  c0 4315   class class class wbr 5139  cen 8933  cdju 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-en 8937  df-dju 9893
This theorem is referenced by:  dju1en  10163  djucomen  10169  djuassen  10170  xpdjuen  10171  onadju  10185  pwxpndom2  10657
  Copyright terms: Public domain W3C validator