![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djuenun | Structured version Visualization version GIF version |
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
Ref | Expression |
---|---|
djuenun | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuen 10163 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | |
2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) |
3 | relen 8943 | . . . 4 ⊢ Rel ≈ | |
4 | 3 | brrelex2i 5733 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
5 | 3 | brrelex2i 5733 | . . 3 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
6 | id 22 | . . 3 ⊢ ((𝐵 ∩ 𝐷) = ∅ → (𝐵 ∩ 𝐷) = ∅) | |
7 | endjudisj 10162 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) | |
8 | 4, 5, 6, 7 | syl3an 1160 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) |
9 | entr 9001 | . 2 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷) ∧ (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
10 | 2, 8, 9 | syl2anc 584 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3946 ∩ cin 3947 ∅c0 4322 class class class wbr 5148 ≈ cen 8935 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-en 8939 df-dju 9895 |
This theorem is referenced by: dju1en 10165 djucomen 10171 djuassen 10172 xpdjuen 10173 onadju 10187 pwxpndom2 10659 |
Copyright terms: Public domain | W3C validator |