Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djuenun | Structured version Visualization version GIF version |
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
Ref | Expression |
---|---|
djuenun | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuen 10026 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) |
3 | relen 8809 | . . . 4 ⊢ Rel ≈ | |
4 | 3 | brrelex2i 5675 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
5 | 3 | brrelex2i 5675 | . . 3 ⊢ (𝐶 ≈ 𝐷 → 𝐷 ∈ V) |
6 | id 22 | . . 3 ⊢ ((𝐵 ∩ 𝐷) = ∅ → (𝐵 ∩ 𝐷) = ∅) | |
7 | endjudisj 10025 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) | |
8 | 4, 5, 6, 7 | syl3an 1159 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) |
9 | entr 8867 | . 2 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷) ∧ (𝐵 ⊔ 𝐷) ≈ (𝐵 ∪ 𝐷)) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | |
10 | 2, 8, 9 | syl2anc 584 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3896 ∩ cin 3897 ∅c0 4269 class class class wbr 5092 ≈ cen 8801 ⊔ cdju 9755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-1st 7899 df-2nd 7900 df-1o 8367 df-er 8569 df-en 8805 df-dju 9758 |
This theorem is referenced by: dju1en 10028 djucomen 10034 djuassen 10035 xpdjuen 10036 onadju 10050 pwxpndom2 10522 |
Copyright terms: Public domain | W3C validator |