MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuenun Structured version   Visualization version   GIF version

Theorem djuenun 10185
Description: Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.)
Assertion
Ref Expression
djuenun ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))

Proof of Theorem djuenun
StepHypRef Expression
1 djuen 10184 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ≈ (𝐵𝐷))
213adant3 1132 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
3 relen 8964 . . . 4 Rel ≈
43brrelex2i 5711 . . 3 (𝐴𝐵𝐵 ∈ V)
53brrelex2i 5711 . . 3 (𝐶𝐷𝐷 ∈ V)
6 id 22 . . 3 ((𝐵𝐷) = ∅ → (𝐵𝐷) = ∅)
7 endjudisj 10183 . . 3 ((𝐵 ∈ V ∧ 𝐷 ∈ V ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
84, 5, 6, 7syl3an 1160 . 2 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ≈ (𝐵𝐷))
9 entr 9020 . 2 (((𝐴𝐶) ≈ (𝐵𝐷) ∧ (𝐵𝐷) ≈ (𝐵𝐷)) → (𝐴𝐶) ≈ (𝐵𝐷))
102, 8, 9syl2anc 584 1 ((𝐴𝐵𝐶𝐷 ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≈ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  cin 3925  c0 4308   class class class wbr 5119  cen 8956  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-er 8719  df-en 8960  df-dju 9915
This theorem is referenced by:  dju1en  10186  djucomen  10192  djuassen  10193  xpdjuen  10194  onadju  10208  pwxpndom2  10679
  Copyright terms: Public domain W3C validator