MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofurid Structured version   Visualization version   GIF version

Theorem cofurid 17853
Description: The identity functor is a right identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofurid.1 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
cofurid (𝜑 → (𝐹func 𝐼) = 𝐹)

Proof of Theorem cofurid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofurid.1 . . . . . 6 𝐼 = (idfunc𝐶)
2 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 cofulid.g . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4 funcrcl 17825 . . . . . . . 8 (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4syl 17 . . . . . . 7 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
65simpld 494 . . . . . 6 (𝜑𝐶 ∈ Cat)
71, 2, 6idfu1st 17841 . . . . 5 (𝜑 → (1st𝐼) = ( I ↾ (Base‘𝐶)))
87coeq2d 5826 . . . 4 (𝜑 → ((1st𝐹) ∘ (1st𝐼)) = ((1st𝐹) ∘ ( I ↾ (Base‘𝐶))))
9 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
10 relfunc 17824 . . . . . . 7 Rel (𝐶 Func 𝐷)
11 1st2ndbr 8021 . . . . . . 7 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
1210, 3, 11sylancr 587 . . . . . 6 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
132, 9, 12funcf1 17828 . . . . 5 (𝜑 → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
14 fcoi1 6734 . . . . 5 ((1st𝐹):(Base‘𝐶)⟶(Base‘𝐷) → ((1st𝐹) ∘ ( I ↾ (Base‘𝐶))) = (1st𝐹))
1513, 14syl 17 . . . 4 (𝜑 → ((1st𝐹) ∘ ( I ↾ (Base‘𝐶))) = (1st𝐹))
168, 15eqtrd 2764 . . 3 (𝜑 → ((1st𝐹) ∘ (1st𝐼)) = (1st𝐹))
1773ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐼) = ( I ↾ (Base‘𝐶)))
1817fveq1d 6860 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐼)‘𝑥) = (( I ↾ (Base‘𝐶))‘𝑥))
19 fvresi 7147 . . . . . . . . . 10 (𝑥 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
20193ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
2118, 20eqtrd 2764 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐼)‘𝑥) = 𝑥)
2217fveq1d 6860 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐼)‘𝑦) = (( I ↾ (Base‘𝐶))‘𝑦))
23 fvresi 7147 . . . . . . . . . 10 (𝑦 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
24233ad2ant3 1135 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
2522, 24eqtrd 2764 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st𝐼)‘𝑦) = 𝑦)
2621, 25oveq12d 7405 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) = (𝑥(2nd𝐹)𝑦))
2763ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
28 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
29 simp2 1137 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
30 simp3 1138 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
311, 2, 27, 28, 29, 30idfu2nd 17839 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))
3226, 31coeq12d 5828 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦)) = ((𝑥(2nd𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦))))
33 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
34123ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
352, 28, 33, 34, 29, 30funcf2 17830 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
36 fcoi1 6734 . . . . . . 7 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)) → ((𝑥(2nd𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) = (𝑥(2nd𝐹)𝑦))
3735, 36syl 17 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) = (𝑥(2nd𝐹)𝑦))
3832, 37eqtrd 2764 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦)) = (𝑥(2nd𝐹)𝑦))
3938mpoeq3dva 7466 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
402, 12funcfn2 17831 . . . . 5 (𝜑 → (2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)))
41 fnov 7520 . . . . 5 ((2nd𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
4240, 41sylib 218 . . . 4 (𝜑 → (2nd𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐹)𝑦)))
4339, 42eqtr4d 2767 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦))) = (2nd𝐹))
4416, 43opeq12d 4845 . 2 (𝜑 → ⟨((1st𝐹) ∘ (1st𝐼)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦)))⟩ = ⟨(1st𝐹), (2nd𝐹)⟩)
451idfucl 17843 . . . 4 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
466, 45syl 17 . . 3 (𝜑𝐼 ∈ (𝐶 Func 𝐶))
472, 46, 3cofuval 17844 . 2 (𝜑 → (𝐹func 𝐼) = ⟨((1st𝐹) ∘ (1st𝐼)), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st𝐼)‘𝑥)(2nd𝐹)((1st𝐼)‘𝑦)) ∘ (𝑥(2nd𝐼)𝑦)))⟩)
48 1st2nd 8018 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4910, 3, 48sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
5044, 47, 493eqtr4d 2774 1 (𝜑 → (𝐹func 𝐼) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107   I cid 5532   × cxp 5636  cres 5640  ccom 5642  Rel wrel 5643   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231  Catccat 17625   Func cfunc 17816  idfunccidfu 17817  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-idfu 17821  df-cofu 17822
This theorem is referenced by:  catccatid  18068
  Copyright terms: Public domain W3C validator