Step | Hyp | Ref
| Expression |
1 | | cofurid.1 |
. . . . . 6
⊢ 𝐼 =
(idfunc‘𝐶) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
3 | | cofulid.g |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
4 | | funcrcl 17494 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
6 | 5 | simpld 494 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | 1, 2, 6 | idfu1st 17510 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐼) = ( I ↾
(Base‘𝐶))) |
8 | 7 | coeq2d 5760 |
. . . 4
⊢ (𝜑 → ((1st
‘𝐹) ∘
(1st ‘𝐼))
= ((1st ‘𝐹) ∘ ( I ↾ (Base‘𝐶)))) |
9 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
10 | | relfunc 17493 |
. . . . . . 7
⊢ Rel
(𝐶 Func 𝐷) |
11 | | 1st2ndbr 7856 |
. . . . . . 7
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
12 | 10, 3, 11 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
13 | 2, 9, 12 | funcf1 17497 |
. . . . 5
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝐶)⟶(Base‘𝐷)) |
14 | | fcoi1 6632 |
. . . . 5
⊢
((1st ‘𝐹):(Base‘𝐶)⟶(Base‘𝐷) → ((1st ‘𝐹) ∘ ( I ↾
(Base‘𝐶))) =
(1st ‘𝐹)) |
15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → ((1st
‘𝐹) ∘ ( I
↾ (Base‘𝐶))) =
(1st ‘𝐹)) |
16 | 8, 15 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((1st
‘𝐹) ∘
(1st ‘𝐼))
= (1st ‘𝐹)) |
17 | 7 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st ‘𝐼) = ( I ↾
(Base‘𝐶))) |
18 | 17 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐼)‘𝑥) = (( I ↾ (Base‘𝐶))‘𝑥)) |
19 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (Base‘𝐶) → (( I ↾
(Base‘𝐶))‘𝑥) = 𝑥) |
20 | 19 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥) |
21 | 18, 20 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐼)‘𝑥) = 𝑥) |
22 | 17 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐼)‘𝑦) = (( I ↾ (Base‘𝐶))‘𝑦)) |
23 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (Base‘𝐶) → (( I ↾
(Base‘𝐶))‘𝑦) = 𝑦) |
24 | 23 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦) |
25 | 22, 24 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((1st ‘𝐼)‘𝑦) = 𝑦) |
26 | 21, 25 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) = (𝑥(2nd ‘𝐹)𝑦)) |
27 | 6 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
28 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
29 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
30 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶)) |
31 | 1, 2, 27, 28, 29, 30 | idfu2nd 17508 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) |
32 | 26, 31 | coeq12d 5762 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦)) = ((𝑥(2nd ‘𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦)))) |
33 | | eqid 2738 |
. . . . . . . 8
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
34 | 12 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
35 | 2, 28, 33, 34, 29, 30 | funcf2 17499 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦))) |
36 | | fcoi1 6632 |
. . . . . . 7
⊢ ((𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘𝐹)‘𝑥)(Hom ‘𝐷)((1st ‘𝐹)‘𝑦)) → ((𝑥(2nd ‘𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) = (𝑥(2nd ‘𝐹)𝑦)) |
37 | 35, 36 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((𝑥(2nd ‘𝐹)𝑦) ∘ ( I ↾ (𝑥(Hom ‘𝐶)𝑦))) = (𝑥(2nd ‘𝐹)𝑦)) |
38 | 32, 37 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦)) = (𝑥(2nd ‘𝐹)𝑦)) |
39 | 38 | mpoeq3dva 7330 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦))) |
40 | 2, 12 | funcfn2 17500 |
. . . . 5
⊢ (𝜑 → (2nd
‘𝐹) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
41 | | fnov 7383 |
. . . . 5
⊢
((2nd ‘𝐹) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦))) |
42 | 40, 41 | sylib 217 |
. . . 4
⊢ (𝜑 → (2nd
‘𝐹) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘𝐹)𝑦))) |
43 | 39, 42 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦))) = (2nd ‘𝐹)) |
44 | 16, 43 | opeq12d 4809 |
. 2
⊢ (𝜑 → 〈((1st
‘𝐹) ∘
(1st ‘𝐼)),
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦)))〉 = 〈(1st
‘𝐹), (2nd
‘𝐹)〉) |
45 | 1 | idfucl 17512 |
. . . 4
⊢ (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶)) |
46 | 6, 45 | syl 17 |
. . 3
⊢ (𝜑 → 𝐼 ∈ (𝐶 Func 𝐶)) |
47 | 2, 46, 3 | cofuval 17513 |
. 2
⊢ (𝜑 → (𝐹 ∘func 𝐼) = 〈((1st
‘𝐹) ∘
(1st ‘𝐼)),
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((((1st ‘𝐼)‘𝑥)(2nd ‘𝐹)((1st ‘𝐼)‘𝑦)) ∘ (𝑥(2nd ‘𝐼)𝑦)))〉) |
48 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
49 | 10, 3, 48 | sylancr 586 |
. 2
⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
50 | 44, 47, 49 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝐹 ∘func 𝐼) = 𝐹) |