MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Visualization version   GIF version

Theorem resf2nd 17959
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
resf2nd.x (𝜑𝑋𝑆)
resf2nd.y (𝜑𝑌𝑆)
Assertion
Ref Expression
resf2nd (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))

Proof of Theorem resf2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7451 . 2 (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩)
2 resf1st.f . . . . . 6 (𝜑𝐹𝑉)
3 resf1st.h . . . . . 6 (𝜑𝐻𝑊)
42, 3resfval 17956 . . . . 5 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
54fveq2d 6924 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
6 fvex 6933 . . . . . 6 (1st𝐹) ∈ V
76resex 6058 . . . . 5 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
8 dmexg 7941 . . . . . 6 (𝐻𝑊 → dom 𝐻 ∈ V)
9 mptexg 7258 . . . . . 6 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
103, 8, 93syl 18 . . . . 5 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
11 op2ndg 8043 . . . . 5 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
127, 10, 11sylancr 586 . . . 4 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
135, 12eqtrd 2780 . . 3 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
14 simpr 484 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1514fveq2d 6924 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩))
16 df-ov 7451 . . . . 5 (𝑋(2nd𝐹)𝑌) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩)
1715, 16eqtr4di 2798 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = (𝑋(2nd𝐹)𝑌))
1814fveq2d 6924 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
19 df-ov 7451 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2018, 19eqtr4di 2798 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
2117, 20reseq12d 6010 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
22 resf2nd.x . . . . 5 (𝜑𝑋𝑆)
23 resf2nd.y . . . . 5 (𝜑𝑌𝑆)
2422, 23opelxpd 5739 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑆 × 𝑆))
25 resf1st.s . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
2625fndmd 6684 . . . 4 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
2724, 26eleqtrrd 2847 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
28 ovex 7481 . . . . 5 (𝑋(2nd𝐹)𝑌) ∈ V
2928resex 6058 . . . 4 ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V
3029a1i 11 . . 3 (𝜑 → ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V)
3113, 21, 27, 30fvmptd 7036 . 2 (𝜑 → ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
321, 31eqtrid 2792 1 (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249   × cxp 5698  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  f cresf 17921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-resf 17925
This theorem is referenced by:  funcres  17960
  Copyright terms: Public domain W3C validator