| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7413 |
. 2
⊢ (𝑋(2nd ‘(𝐹 ↾f
𝐻))𝑌) = ((2nd ‘(𝐹 ↾f
𝐻))‘〈𝑋, 𝑌〉) |
| 2 | | resf1st.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 3 | | resf1st.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| 4 | 2, 3 | resfval 17910 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
| 5 | 4 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
| 6 | | fvex 6894 |
. . . . . 6
⊢
(1st ‘𝐹) ∈ V |
| 7 | 6 | resex 6021 |
. . . . 5
⊢
((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
| 8 | | dmexg 7902 |
. . . . . 6
⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) |
| 9 | | mptexg 7218 |
. . . . . 6
⊢ (dom
𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 10 | 3, 8, 9 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 11 | | op2ndg 8006 |
. . . . 5
⊢
((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 12 | 7, 10, 11 | sylancr 587 |
. . . 4
⊢ (𝜑 → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 13 | 5, 12 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
| 14 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) |
| 15 | 14 | fveq2d 6885 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ((2nd ‘𝐹)‘𝑧) = ((2nd ‘𝐹)‘〈𝑋, 𝑌〉)) |
| 16 | | df-ov 7413 |
. . . . 5
⊢ (𝑋(2nd ‘𝐹)𝑌) = ((2nd ‘𝐹)‘〈𝑋, 𝑌〉) |
| 17 | 15, 16 | eqtr4di 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ((2nd ‘𝐹)‘𝑧) = (𝑋(2nd ‘𝐹)𝑌)) |
| 18 | 14 | fveq2d 6885 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
| 19 | | df-ov 7413 |
. . . . 5
⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) |
| 20 | 18, 19 | eqtr4di 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 21 | 17, 20 | reseq12d 5972 |
. . 3
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (((2nd
‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |
| 22 | | resf2nd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 23 | | resf2nd.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| 24 | 22, 23 | opelxpd 5698 |
. . . 4
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑆 × 𝑆)) |
| 25 | | resf1st.s |
. . . . 5
⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| 26 | 25 | fndmd 6648 |
. . . 4
⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 27 | 24, 26 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐻) |
| 28 | | ovex 7443 |
. . . . 5
⊢ (𝑋(2nd ‘𝐹)𝑌) ∈ V |
| 29 | 28 | resex 6021 |
. . . 4
⊢ ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V |
| 30 | 29 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V) |
| 31 | 13, 21, 27, 30 | fvmptd 6998 |
. 2
⊢ (𝜑 → ((2nd
‘(𝐹
↾f 𝐻))‘〈𝑋, 𝑌〉) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |
| 32 | 1, 31 | eqtrid 2783 |
1
⊢ (𝜑 → (𝑋(2nd ‘(𝐹 ↾f 𝐻))𝑌) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |