MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Visualization version   GIF version

Theorem resf2nd 17857
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
resf2nd.x (𝜑𝑋𝑆)
resf2nd.y (𝜑𝑌𝑆)
Assertion
Ref Expression
resf2nd (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))

Proof of Theorem resf2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7390 . 2 (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩)
2 resf1st.f . . . . . 6 (𝜑𝐹𝑉)
3 resf1st.h . . . . . 6 (𝜑𝐻𝑊)
42, 3resfval 17854 . . . . 5 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
54fveq2d 6862 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
6 fvex 6871 . . . . . 6 (1st𝐹) ∈ V
76resex 6000 . . . . 5 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
8 dmexg 7877 . . . . . 6 (𝐻𝑊 → dom 𝐻 ∈ V)
9 mptexg 7195 . . . . . 6 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
103, 8, 93syl 18 . . . . 5 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
11 op2ndg 7981 . . . . 5 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
127, 10, 11sylancr 587 . . . 4 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
135, 12eqtrd 2764 . . 3 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
14 simpr 484 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1514fveq2d 6862 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩))
16 df-ov 7390 . . . . 5 (𝑋(2nd𝐹)𝑌) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩)
1715, 16eqtr4di 2782 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = (𝑋(2nd𝐹)𝑌))
1814fveq2d 6862 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
19 df-ov 7390 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2018, 19eqtr4di 2782 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
2117, 20reseq12d 5951 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
22 resf2nd.x . . . . 5 (𝜑𝑋𝑆)
23 resf2nd.y . . . . 5 (𝜑𝑌𝑆)
2422, 23opelxpd 5677 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑆 × 𝑆))
25 resf1st.s . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
2625fndmd 6623 . . . 4 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
2724, 26eleqtrrd 2831 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
28 ovex 7420 . . . . 5 (𝑋(2nd𝐹)𝑌) ∈ V
2928resex 6000 . . . 4 ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V
3029a1i 11 . . 3 (𝜑 → ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V)
3113, 21, 27, 30fvmptd 6975 . 2 (𝜑 → ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
321, 31eqtrid 2776 1 (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cmpt 5188   × cxp 5636  dom cdm 5638  cres 5640   Fn wfn 6506  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  f cresf 17819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-resf 17823
This theorem is referenced by:  funcres  17858
  Copyright terms: Public domain W3C validator