MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf2nd Structured version   Visualization version   GIF version

Theorem resf2nd 17844
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
resf2nd.x (𝜑𝑋𝑆)
resf2nd.y (𝜑𝑌𝑆)
Assertion
Ref Expression
resf2nd (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))

Proof of Theorem resf2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7411 . 2 (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩)
2 resf1st.f . . . . . 6 (𝜑𝐹𝑉)
3 resf1st.h . . . . . 6 (𝜑𝐻𝑊)
42, 3resfval 17841 . . . . 5 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
54fveq2d 6895 . . . 4 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
6 fvex 6904 . . . . . 6 (1st𝐹) ∈ V
76resex 6029 . . . . 5 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
8 dmexg 7893 . . . . . 6 (𝐻𝑊 → dom 𝐻 ∈ V)
9 mptexg 7222 . . . . . 6 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
103, 8, 93syl 18 . . . . 5 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
11 op2ndg 7987 . . . . 5 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
127, 10, 11sylancr 587 . . . 4 (𝜑 → (2nd ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
135, 12eqtrd 2772 . . 3 (𝜑 → (2nd ‘(𝐹f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))))
14 simpr 485 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1514fveq2d 6895 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩))
16 df-ov 7411 . . . . 5 (𝑋(2nd𝐹)𝑌) = ((2nd𝐹)‘⟨𝑋, 𝑌⟩)
1715, 16eqtr4di 2790 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ((2nd𝐹)‘𝑧) = (𝑋(2nd𝐹)𝑌))
1814fveq2d 6895 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
19 df-ov 7411 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2018, 19eqtr4di 2790 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
2117, 20reseq12d 5982 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
22 resf2nd.x . . . . 5 (𝜑𝑋𝑆)
23 resf2nd.y . . . . 5 (𝜑𝑌𝑆)
2422, 23opelxpd 5715 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑆 × 𝑆))
25 resf1st.s . . . . 5 (𝜑𝐻 Fn (𝑆 × 𝑆))
2625fndmd 6654 . . . 4 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
2724, 26eleqtrrd 2836 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom 𝐻)
28 ovex 7441 . . . . 5 (𝑋(2nd𝐹)𝑌) ∈ V
2928resex 6029 . . . 4 ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V
3029a1i 11 . . 3 (𝜑 → ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V)
3113, 21, 27, 30fvmptd 7005 . 2 (𝜑 → ((2nd ‘(𝐹f 𝐻))‘⟨𝑋, 𝑌⟩) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
321, 31eqtrid 2784 1 (𝜑 → (𝑋(2nd ‘(𝐹f 𝐻))𝑌) = ((𝑋(2nd𝐹)𝑌) ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cop 4634  cmpt 5231   × cxp 5674  dom cdm 5676  cres 5678   Fn wfn 6538  cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  f cresf 17806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-2nd 7975  df-resf 17810
This theorem is referenced by:  funcres  17845
  Copyright terms: Public domain W3C validator