Step | Hyp | Ref
| Expression |
1 | | df-ov 7271 |
. 2
⊢ (𝑋(2nd ‘(𝐹 ↾f
𝐻))𝑌) = ((2nd ‘(𝐹 ↾f
𝐻))‘〈𝑋, 𝑌〉) |
2 | | resf1st.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
3 | | resf1st.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ 𝑊) |
4 | 2, 3 | resfval 17588 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st
‘𝐹) ↾ dom dom
𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
5 | 4 | fveq2d 6772 |
. . . 4
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
6 | | fvex 6781 |
. . . . . 6
⊢
(1st ‘𝐹) ∈ V |
7 | 6 | resex 5936 |
. . . . 5
⊢
((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
8 | | dmexg 7737 |
. . . . . 6
⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) |
9 | | mptexg 7091 |
. . . . . 6
⊢ (dom
𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
10 | 3, 8, 9 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
11 | | op2ndg 7830 |
. . . . 5
⊢
((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
12 | 7, 10, 11 | sylancr 586 |
. . . 4
⊢ (𝜑 → (2nd
‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
13 | 5, 12 | eqtrd 2779 |
. . 3
⊢ (𝜑 → (2nd
‘(𝐹
↾f 𝐻)) = (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))) |
14 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) |
15 | 14 | fveq2d 6772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ((2nd ‘𝐹)‘𝑧) = ((2nd ‘𝐹)‘〈𝑋, 𝑌〉)) |
16 | | df-ov 7271 |
. . . . 5
⊢ (𝑋(2nd ‘𝐹)𝑌) = ((2nd ‘𝐹)‘〈𝑋, 𝑌〉) |
17 | 15, 16 | eqtr4di 2797 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ((2nd ‘𝐹)‘𝑧) = (𝑋(2nd ‘𝐹)𝑌)) |
18 | 14 | fveq2d 6772 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
19 | | df-ov 7271 |
. . . . 5
⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) |
20 | 18, 19 | eqtr4di 2797 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
21 | 17, 20 | reseq12d 5889 |
. . 3
⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (((2nd
‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |
22 | | resf2nd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
23 | | resf2nd.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑆) |
24 | 22, 23 | opelxpd 5626 |
. . . 4
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑆 × 𝑆)) |
25 | | resf1st.s |
. . . . 5
⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
26 | 25 | fndmd 6534 |
. . . 4
⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
27 | 24, 26 | eleqtrrd 2843 |
. . 3
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom 𝐻) |
28 | | ovex 7301 |
. . . . 5
⊢ (𝑋(2nd ‘𝐹)𝑌) ∈ V |
29 | 28 | resex 5936 |
. . . 4
⊢ ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V |
30 | 29 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌)) ∈ V) |
31 | 13, 21, 27, 30 | fvmptd 6876 |
. 2
⊢ (𝜑 → ((2nd
‘(𝐹
↾f 𝐻))‘〈𝑋, 𝑌〉) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |
32 | 1, 31 | eqtrid 2791 |
1
⊢ (𝜑 → (𝑋(2nd ‘(𝐹 ↾f 𝐻))𝑌) = ((𝑋(2nd ‘𝐹)𝑌) ↾ (𝑋𝐻𝑌))) |