MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval2 Structured version   Visualization version   GIF version

Theorem resfval2 16864
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
resfval2.g (𝜑𝐺𝑋)
resfval2.d (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resfval2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑦,𝐺   𝑥,𝐻,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem resfval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 5122 . . . 4 𝐹, 𝐺⟩ ∈ V
21a1i 11 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V)
3 resfval.d . . 3 (𝜑𝐻𝑊)
42, 3resfval 16863 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩)
5 resfval.c . . . . 5 (𝜑𝐹𝑉)
6 resfval2.g . . . . 5 (𝜑𝐺𝑋)
7 op1stg 7412 . . . . 5 ((𝐹𝑉𝐺𝑋) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
85, 6, 7syl2anc 580 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9 resfval2.d . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
10 fndm 6200 . . . . . . 7 (𝐻 Fn (𝑆 × 𝑆) → dom 𝐻 = (𝑆 × 𝑆))
119, 10syl 17 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1211dmeqd 5528 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
13 dmxpid 5547 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1412, 13syl6eq 2848 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
158, 14reseq12d 5600 . . 3 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻) = (𝐹𝑆))
16 op2ndg 7413 . . . . . . . 8 ((𝐹𝑉𝐺𝑋) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
175, 6, 16syl2anc 580 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
1817fveq1d 6412 . . . . . 6 (𝜑 → ((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) = (𝐺𝑧))
1918reseq1d 5598 . . . . 5 (𝜑 → (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)) = ((𝐺𝑧) ↾ (𝐻𝑧)))
2011, 19mpteq12dv 4925 . . . 4 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))))
21 fveq2 6410 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
22 df-ov 6880 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
2321, 22syl6eqr 2850 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
24 fveq2 6410 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
25 df-ov 6880 . . . . . . 7 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
2624, 25syl6eqr 2850 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
2723, 26reseq12d 5600 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ↾ (𝐻𝑧)) = ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2827mpt2mpt 6985 . . . 4 (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2920, 28syl6eq 2848 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦))))
3015, 29opeq12d 4600 . 2 (𝜑 → ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩ = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
314, 30eqtrd 2832 1 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  Vcvv 3384  cop 4373  cmpt 4921   × cxp 5309  dom cdm 5311  cres 5313   Fn wfn 6095  cfv 6100  (class class class)co 6877  cmpt2 6879  1st c1st 7398  2nd c2nd 7399  f cresf 16828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-iun 4711  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-iota 6063  df-fun 6102  df-fn 6103  df-fv 6108  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-1st 7400  df-2nd 7401  df-resf 16832
This theorem is referenced by:  funcrngcsetc  42786  funcringcsetc  42823
  Copyright terms: Public domain W3C validator