Step | Hyp | Ref
| Expression |
1 | | opex 5464 |
. . . 4
⊢
⟨𝐹, 𝐺⟩ ∈ V |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V) |
3 | | resfval.d |
. . 3
⊢ (𝜑 → 𝐻 ∈ 𝑊) |
4 | 2, 3 | resfval 17841 |
. 2
⊢ (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨((1st
‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻‘𝑧)))⟩) |
5 | | resfval.c |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
6 | | resfval2.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑋) |
7 | | op1stg 7986 |
. . . . 5
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹) |
8 | 5, 6, 7 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (1st
‘⟨𝐹, 𝐺⟩) = 𝐹) |
9 | | resfval2.d |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
10 | 9 | fndmd 6654 |
. . . . . 6
⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
11 | 10 | dmeqd 5905 |
. . . . 5
⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
12 | | dmxpid 5929 |
. . . . 5
⊢ dom
(𝑆 × 𝑆) = 𝑆 |
13 | 11, 12 | eqtrdi 2788 |
. . . 4
⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
14 | 8, 13 | reseq12d 5982 |
. . 3
⊢ (𝜑 → ((1st
‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻) = (𝐹 ↾ 𝑆)) |
15 | | op2ndg 7987 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑋) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺) |
16 | 5, 6, 15 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘⟨𝐹, 𝐺⟩) = 𝐺) |
17 | 16 | fveq1d 6893 |
. . . . . 6
⊢ (𝜑 → ((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) = (𝐺‘𝑧)) |
18 | 17 | reseq1d 5980 |
. . . . 5
⊢ (𝜑 → (((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻‘𝑧)) = ((𝐺‘𝑧) ↾ (𝐻‘𝑧))) |
19 | 10, 18 | mpteq12dv 5239 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻‘𝑧))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺‘𝑧) ↾ (𝐻‘𝑧)))) |
20 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺‘𝑧) = (𝐺‘⟨𝑥, 𝑦⟩)) |
21 | | df-ov 7411 |
. . . . . . 7
⊢ (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩) |
22 | 20, 21 | eqtr4di 2790 |
. . . . . 6
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺‘𝑧) = (𝑥𝐺𝑦)) |
23 | | fveq2 6891 |
. . . . . . 7
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻‘𝑧) = (𝐻‘⟨𝑥, 𝑦⟩)) |
24 | | df-ov 7411 |
. . . . . . 7
⊢ (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩) |
25 | 23, 24 | eqtr4di 2790 |
. . . . . 6
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻‘𝑧) = (𝑥𝐻𝑦)) |
26 | 22, 25 | reseq12d 5982 |
. . . . 5
⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺‘𝑧) ↾ (𝐻‘𝑧)) = ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦))) |
27 | 26 | mpompt 7521 |
. . . 4
⊢ (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺‘𝑧) ↾ (𝐻‘𝑧))) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦))) |
28 | 19, 27 | eqtrdi 2788 |
. . 3
⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻‘𝑧))) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))) |
29 | 14, 28 | opeq12d 4881 |
. 2
⊢ (𝜑 → ⟨((1st
‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd
‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻‘𝑧)))⟩ = ⟨(𝐹 ↾ 𝑆), (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩) |
30 | 4, 29 | eqtrd 2772 |
1
⊢ (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹 ↾ 𝑆), (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩) |