MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfval2 Structured version   Visualization version   GIF version

Theorem resfval2 17657
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resfval.c (𝜑𝐹𝑉)
resfval.d (𝜑𝐻𝑊)
resfval2.g (𝜑𝐺𝑋)
resfval2.d (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resfval2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑦,𝐺   𝑥,𝐻,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem resfval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 5392 . . . 4 𝐹, 𝐺⟩ ∈ V
21a1i 11 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V)
3 resfval.d . . 3 (𝜑𝐻𝑊)
42, 3resfval 17656 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩)
5 resfval.c . . . . 5 (𝜑𝐹𝑉)
6 resfval2.g . . . . 5 (𝜑𝐺𝑋)
7 op1stg 7875 . . . . 5 ((𝐹𝑉𝐺𝑋) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
85, 6, 7syl2anc 585 . . . 4 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
9 resfval2.d . . . . . . 7 (𝜑𝐻 Fn (𝑆 × 𝑆))
109fndmd 6569 . . . . . 6 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1110dmeqd 5827 . . . . 5 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
12 dmxpid 5851 . . . . 5 dom (𝑆 × 𝑆) = 𝑆
1311, 12eqtrdi 2792 . . . 4 (𝜑 → dom dom 𝐻 = 𝑆)
148, 13reseq12d 5904 . . 3 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻) = (𝐹𝑆))
15 op2ndg 7876 . . . . . . . 8 ((𝐹𝑉𝐺𝑋) → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
165, 6, 15syl2anc 585 . . . . . . 7 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
1716fveq1d 6806 . . . . . 6 (𝜑 → ((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) = (𝐺𝑧))
1817reseq1d 5902 . . . . 5 (𝜑 → (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)) = ((𝐺𝑧) ↾ (𝐻𝑧)))
1910, 18mpteq12dv 5172 . . . 4 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))))
20 fveq2 6804 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
21 df-ov 7310 . . . . . . 7 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
2220, 21eqtr4di 2794 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
23 fveq2 6804 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
24 df-ov 7310 . . . . . . 7 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
2523, 24eqtr4di 2794 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
2622, 25reseq12d 5904 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ↾ (𝐻𝑧)) = ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2726mpompt 7420 . . . 4 (𝑧 ∈ (𝑆 × 𝑆) ↦ ((𝐺𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))
2819, 27eqtrdi 2792 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧))) = (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦))))
2914, 28opeq12d 4817 . 2 (𝜑 → ⟨((1st ‘⟨𝐹, 𝐺⟩) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘⟨𝐹, 𝐺⟩)‘𝑧) ↾ (𝐻𝑧)))⟩ = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
304, 29eqtrd 2776 1 (𝜑 → (⟨𝐹, 𝐺⟩ ↾f 𝐻) = ⟨(𝐹𝑆), (𝑥𝑆, 𝑦𝑆 ↦ ((𝑥𝐺𝑦) ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  cop 4571  cmpt 5164   × cxp 5598  dom cdm 5600  cres 5602   Fn wfn 6453  cfv 6458  (class class class)co 7307  cmpo 7309  1st c1st 7861  2nd c2nd 7862  f cresf 17621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-resf 17625
This theorem is referenced by:  funcrngcsetc  45800  funcringcsetc  45837
  Copyright terms: Public domain W3C validator