| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resf1st | Structured version Visualization version GIF version | ||
| Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| resf1st.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| resf1st.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| resf1st.s | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| resf1st | ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resf1st.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | resf1st.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 3 | 1, 2 | resfval 17905 | . . 3 ⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
| 4 | 3 | fveq2d 6880 | . 2 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
| 5 | fvex 6889 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
| 6 | 5 | resex 6016 | . . 3 ⊢ ((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
| 7 | dmexg 7897 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) | |
| 8 | mptexg 7213 | . . . 4 ⊢ (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) | |
| 9 | 2, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 10 | op1stg 8000 | . . 3 ⊢ ((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) | |
| 11 | 6, 9, 10 | sylancr 587 | . 2 ⊢ (𝜑 → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) |
| 12 | resf1st.s | . . . . . 6 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 13 | 12 | fndmd 6643 | . . . . 5 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 14 | 13 | dmeqd 5885 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 15 | dmxpid 5910 | . . . 4 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 16 | 14, 15 | eqtrdi 2786 | . . 3 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 17 | 16 | reseq2d 5966 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) ↾ dom dom 𝐻) = ((1st ‘𝐹) ↾ 𝑆)) |
| 18 | 4, 11, 17 | 3eqtrd 2774 | 1 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 ↾ cres 5656 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ↾f cresf 17870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-resf 17874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |