MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Structured version   Visualization version   GIF version

Theorem resf1st 17863
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resf1st (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))

Proof of Theorem resf1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4 (𝜑𝐹𝑉)
2 resf1st.h . . . 4 (𝜑𝐻𝑊)
31, 2resfval 17861 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6865 . 2 (𝜑 → (1st ‘(𝐹f 𝐻)) = (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6874 . . . 4 (1st𝐹) ∈ V
65resex 6003 . . 3 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7880 . . . 4 (𝐻𝑊 → dom 𝐻 ∈ V)
8 mptexg 7198 . . . 4 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op1stg 7983 . . 3 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
116, 9, 10sylancr 587 . 2 (𝜑 → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
12 resf1st.s . . . . . 6 (𝜑𝐻 Fn (𝑆 × 𝑆))
1312fndmd 6626 . . . . 5 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1413dmeqd 5872 . . . 4 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
15 dmxpid 5897 . . . 4 dom (𝑆 × 𝑆) = 𝑆
1614, 15eqtrdi 2781 . . 3 (𝜑 → dom dom 𝐻 = 𝑆)
1716reseq2d 5953 . 2 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻) = ((1st𝐹) ↾ 𝑆))
184, 11, 173eqtrd 2769 1 (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cmpt 5191   × cxp 5639  dom cdm 5641  cres 5643   Fn wfn 6509  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  f cresf 17826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-resf 17830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator