MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Structured version   Visualization version   GIF version

Theorem resf1st 17609
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resf1st (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))

Proof of Theorem resf1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4 (𝜑𝐹𝑉)
2 resf1st.h . . . 4 (𝜑𝐻𝑊)
31, 2resfval 17607 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6778 . 2 (𝜑 → (1st ‘(𝐹f 𝐻)) = (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6787 . . . 4 (1st𝐹) ∈ V
65resex 5939 . . 3 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7750 . . . 4 (𝐻𝑊 → dom 𝐻 ∈ V)
8 mptexg 7097 . . . 4 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op1stg 7843 . . 3 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
116, 9, 10sylancr 587 . 2 (𝜑 → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
12 resf1st.s . . . . . 6 (𝜑𝐻 Fn (𝑆 × 𝑆))
1312fndmd 6538 . . . . 5 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1413dmeqd 5814 . . . 4 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
15 dmxpid 5839 . . . 4 dom (𝑆 × 𝑆) = 𝑆
1614, 15eqtrdi 2794 . . 3 (𝜑 → dom dom 𝐻 = 𝑆)
1716reseq2d 5891 . 2 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻) = ((1st𝐹) ↾ 𝑆))
184, 11, 173eqtrd 2782 1 (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cmpt 5157   × cxp 5587  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  f cresf 17572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-resf 17576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator