| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resf1st | Structured version Visualization version GIF version | ||
| Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| resf1st.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| resf1st.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| resf1st.s | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| Ref | Expression |
|---|---|
| resf1st | ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resf1st.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | resf1st.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 3 | 1, 2 | resfval 17817 | . . 3 ⊢ (𝜑 → (𝐹 ↾f 𝐻) = 〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) |
| 4 | 3 | fveq2d 6830 | . 2 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉)) |
| 5 | fvex 6839 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
| 6 | 5 | resex 5984 | . . 3 ⊢ ((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
| 7 | dmexg 7841 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) | |
| 8 | mptexg 7161 | . . . 4 ⊢ (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) | |
| 9 | 2, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
| 10 | op1stg 7943 | . . 3 ⊢ ((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) | |
| 11 | 6, 9, 10 | sylancr 587 | . 2 ⊢ (𝜑 → (1st ‘〈((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))〉) = ((1st ‘𝐹) ↾ dom dom 𝐻)) |
| 12 | resf1st.s | . . . . . 6 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 13 | 12 | fndmd 6591 | . . . . 5 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
| 14 | 13 | dmeqd 5852 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
| 15 | dmxpid 5876 | . . . 4 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
| 16 | 14, 15 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
| 17 | 16 | reseq2d 5934 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) ↾ dom dom 𝐻) = ((1st ‘𝐹) ↾ 𝑆)) |
| 18 | 4, 11, 17 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 ↦ cmpt 5176 × cxp 5621 dom cdm 5623 ↾ cres 5625 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ↾f cresf 17782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-resf 17786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |