![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resf1st | Structured version Visualization version GIF version |
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
resf1st.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
resf1st.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
resf1st.s | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
resf1st | ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resf1st.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | resf1st.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
3 | 1, 2 | resfval 17846 | . . 3 ⊢ (𝜑 → (𝐹 ↾f 𝐻) = ⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) |
4 | 3 | fveq2d 6895 | . 2 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩)) |
5 | fvex 6904 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
6 | 5 | resex 6029 | . . 3 ⊢ ((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
7 | dmexg 7896 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) | |
8 | mptexg 7225 | . . . 4 ⊢ (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) | |
9 | 2, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
10 | op1stg 7989 | . . 3 ⊢ ((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) = ((1st ‘𝐹) ↾ dom dom 𝐻)) | |
11 | 6, 9, 10 | sylancr 587 | . 2 ⊢ (𝜑 → (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) = ((1st ‘𝐹) ↾ dom dom 𝐻)) |
12 | resf1st.s | . . . . . 6 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
13 | 12 | fndmd 6654 | . . . . 5 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
14 | 13 | dmeqd 5905 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
15 | dmxpid 5929 | . . . 4 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
16 | 14, 15 | eqtrdi 2788 | . . 3 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
17 | 16 | reseq2d 5981 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) ↾ dom dom 𝐻) = ((1st ‘𝐹) ↾ 𝑆)) |
18 | 4, 11, 17 | 3eqtrd 2776 | 1 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 ↦ cmpt 5231 × cxp 5674 dom cdm 5676 ↾ cres 5678 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 1st c1st 7975 2nd c2nd 7976 ↾f cresf 17811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-resf 17815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |