MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Structured version   Visualization version   GIF version

Theorem resf1st 17848
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resf1st (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))

Proof of Theorem resf1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4 (𝜑𝐹𝑉)
2 resf1st.h . . . 4 (𝜑𝐻𝑊)
31, 2resfval 17846 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6895 . 2 (𝜑 → (1st ‘(𝐹f 𝐻)) = (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6904 . . . 4 (1st𝐹) ∈ V
65resex 6029 . . 3 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7896 . . . 4 (𝐻𝑊 → dom 𝐻 ∈ V)
8 mptexg 7225 . . . 4 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op1stg 7989 . . 3 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
116, 9, 10sylancr 587 . 2 (𝜑 → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
12 resf1st.s . . . . . 6 (𝜑𝐻 Fn (𝑆 × 𝑆))
1312fndmd 6654 . . . . 5 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1413dmeqd 5905 . . . 4 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
15 dmxpid 5929 . . . 4 dom (𝑆 × 𝑆) = 𝑆
1614, 15eqtrdi 2788 . . 3 (𝜑 → dom dom 𝐻 = 𝑆)
1716reseq2d 5981 . 2 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻) = ((1st𝐹) ↾ 𝑆))
184, 11, 173eqtrd 2776 1 (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cop 4634  cmpt 5231   × cxp 5674  dom cdm 5676  cres 5678   Fn wfn 6538  cfv 6543  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  f cresf 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-resf 17815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator