MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Structured version   Visualization version   GIF version

Theorem resf1st 17796
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resf1st (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))

Proof of Theorem resf1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4 (𝜑𝐹𝑉)
2 resf1st.h . . . 4 (𝜑𝐻𝑊)
31, 2resfval 17794 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6821 . 2 (𝜑 → (1st ‘(𝐹f 𝐻)) = (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6830 . . . 4 (1st𝐹) ∈ V
65resex 5973 . . 3 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7826 . . . 4 (𝐻𝑊 → dom 𝐻 ∈ V)
8 mptexg 7150 . . . 4 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op1stg 7928 . . 3 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
116, 9, 10sylancr 587 . 2 (𝜑 → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
12 resf1st.s . . . . . 6 (𝜑𝐻 Fn (𝑆 × 𝑆))
1312fndmd 6581 . . . . 5 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1413dmeqd 5840 . . . 4 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
15 dmxpid 5865 . . . 4 dom (𝑆 × 𝑆) = 𝑆
1614, 15eqtrdi 2782 . . 3 (𝜑 → dom dom 𝐻 = 𝑆)
1716reseq2d 5923 . 2 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻) = ((1st𝐹) ↾ 𝑆))
184, 11, 173eqtrd 2770 1 (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577  cmpt 5167   × cxp 5609  dom cdm 5611  cres 5613   Fn wfn 6471  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  f cresf 17759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-resf 17763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator