MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1st Structured version   Visualization version   GIF version

Theorem resf1st 17809
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
resf1st.f (𝜑𝐹𝑉)
resf1st.h (𝜑𝐻𝑊)
resf1st.s (𝜑𝐻 Fn (𝑆 × 𝑆))
Assertion
Ref Expression
resf1st (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))

Proof of Theorem resf1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 resf1st.f . . . 4 (𝜑𝐹𝑉)
2 resf1st.h . . . 4 (𝜑𝐻𝑊)
31, 2resfval 17807 . . 3 (𝜑 → (𝐹f 𝐻) = ⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩)
43fveq2d 6835 . 2 (𝜑 → (1st ‘(𝐹f 𝐻)) = (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩))
5 fvex 6844 . . . 4 (1st𝐹) ∈ V
65resex 5985 . . 3 ((1st𝐹) ↾ dom dom 𝐻) ∈ V
7 dmexg 7840 . . . 4 (𝐻𝑊 → dom 𝐻 ∈ V)
8 mptexg 7164 . . . 4 (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
92, 7, 83syl 18 . . 3 (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V)
10 op1stg 7942 . . 3 ((((1st𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧))) ∈ V) → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
116, 9, 10sylancr 587 . 2 (𝜑 → (1st ‘⟨((1st𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd𝐹)‘𝑧) ↾ (𝐻𝑧)))⟩) = ((1st𝐹) ↾ dom dom 𝐻))
12 resf1st.s . . . . . 6 (𝜑𝐻 Fn (𝑆 × 𝑆))
1312fndmd 6594 . . . . 5 (𝜑 → dom 𝐻 = (𝑆 × 𝑆))
1413dmeqd 5851 . . . 4 (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆))
15 dmxpid 5876 . . . 4 dom (𝑆 × 𝑆) = 𝑆
1614, 15eqtrdi 2784 . . 3 (𝜑 → dom dom 𝐻 = 𝑆)
1716reseq2d 5935 . 2 (𝜑 → ((1st𝐹) ↾ dom dom 𝐻) = ((1st𝐹) ↾ 𝑆))
184, 11, 173eqtrd 2772 1 (𝜑 → (1st ‘(𝐹f 𝐻)) = ((1st𝐹) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583  cmpt 5176   × cxp 5619  dom cdm 5621  cres 5623   Fn wfn 6484  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  f cresf 17772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-resf 17776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator