![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resf1st | Structured version Visualization version GIF version |
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
resf1st.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
resf1st.h | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
resf1st.s | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
resf1st | ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resf1st.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
2 | resf1st.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
3 | 1, 2 | resfval 17783 | . . 3 ⊢ (𝜑 → (𝐹 ↾f 𝐻) = ⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) |
4 | 3 | fveq2d 6847 | . 2 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩)) |
5 | fvex 6856 | . . . 4 ⊢ (1st ‘𝐹) ∈ V | |
6 | 5 | resex 5986 | . . 3 ⊢ ((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V |
7 | dmexg 7841 | . . . 4 ⊢ (𝐻 ∈ 𝑊 → dom 𝐻 ∈ V) | |
8 | mptexg 7172 | . . . 4 ⊢ (dom 𝐻 ∈ V → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) | |
9 | 2, 7, 8 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) |
10 | op1stg 7934 | . . 3 ⊢ ((((1st ‘𝐹) ↾ dom dom 𝐻) ∈ V ∧ (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧))) ∈ V) → (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) = ((1st ‘𝐹) ↾ dom dom 𝐻)) | |
11 | 6, 9, 10 | sylancr 588 | . 2 ⊢ (𝜑 → (1st ‘⟨((1st ‘𝐹) ↾ dom dom 𝐻), (𝑧 ∈ dom 𝐻 ↦ (((2nd ‘𝐹)‘𝑧) ↾ (𝐻‘𝑧)))⟩) = ((1st ‘𝐹) ↾ dom dom 𝐻)) |
12 | resf1st.s | . . . . . 6 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
13 | 12 | fndmd 6608 | . . . . 5 ⊢ (𝜑 → dom 𝐻 = (𝑆 × 𝑆)) |
14 | 13 | dmeqd 5862 | . . . 4 ⊢ (𝜑 → dom dom 𝐻 = dom (𝑆 × 𝑆)) |
15 | dmxpid 5886 | . . . 4 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
16 | 14, 15 | eqtrdi 2789 | . . 3 ⊢ (𝜑 → dom dom 𝐻 = 𝑆) |
17 | 16 | reseq2d 5938 | . 2 ⊢ (𝜑 → ((1st ‘𝐹) ↾ dom dom 𝐻) = ((1st ‘𝐹) ↾ 𝑆)) |
18 | 4, 11, 17 | 3eqtrd 2777 | 1 ⊢ (𝜑 → (1st ‘(𝐹 ↾f 𝐻)) = ((1st ‘𝐹) ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ⟨cop 4593 ↦ cmpt 5189 × cxp 5632 dom cdm 5634 ↾ cres 5636 Fn wfn 6492 ‘cfv 6497 (class class class)co 7358 1st c1st 7920 2nd c2nd 7921 ↾f cresf 17748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-resf 17752 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |