MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Visualization version   GIF version

Theorem rngsubdir 20075
Description: Ring multiplication distributes over subtraction. (subdir 11572 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20211. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b 𝐵 = (Base‘𝑅)
rngsubdi.t · = (.r𝑅)
rngsubdi.m = (-g𝑅)
rngsubdi.r (𝜑𝑅 ∈ Rng)
rngsubdi.x (𝜑𝑋𝐵)
rngsubdi.y (𝜑𝑌𝐵)
rngsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdir (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngsubdi.x . . . 4 (𝜑𝑋𝐵)
3 rngsubdi.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2729 . . . . 5 (invg𝑅) = (invg𝑅)
5 rnggrp 20061 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
61, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
7 rngsubdi.y . . . . 5 (𝜑𝑌𝐵)
83, 4, 6, 7grpinvcld 18885 . . . 4 (𝜑 → ((invg𝑅)‘𝑌) ∈ 𝐵)
9 rngsubdi.z . . . 4 (𝜑𝑍𝐵)
10 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
11 rngsubdi.t . . . . 5 · = (.r𝑅)
123, 10, 11rngdir 20064 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
131, 2, 8, 9, 12syl13anc 1374 . . 3 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
143, 11, 4, 1, 7, 9rngmneg1 20070 . . . 4 (𝜑 → (((invg𝑅)‘𝑌) · 𝑍) = ((invg𝑅)‘(𝑌 · 𝑍)))
1514oveq2d 7369 . . 3 (𝜑 → ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
1613, 15eqtrd 2764 . 2 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
17 rngsubdi.m . . . . 5 = (-g𝑅)
183, 10, 4, 17grpsubval 18882 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
192, 7, 18syl2anc 584 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
2019oveq1d 7368 . 2 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍))
213, 11rngcl 20067 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
221, 2, 9, 21syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
233, 11rngcl 20067 . . . 4 ((𝑅 ∈ Rng ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
241, 7, 9, 23syl3anc 1373 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
253, 10, 4, 17grpsubval 18882 . . 3 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2622, 24, 25syl2anc 584 . 2 (𝜑 → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2716, 20, 263eqtr4d 2774 1 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Grpcgrp 18830  invgcminusg 18831  -gcsg 18832  Rngcrng 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-abl 19680  df-mgp 20044  df-rng 20056
This theorem is referenced by:  ringsubdir  20211  2idlcpblrng  21196
  Copyright terms: Public domain W3C validator