| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngsubdir | Structured version Visualization version GIF version | ||
| Description: Ring multiplication distributes over subtraction. (subdir 11572 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20211. (Revised by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngsubdi.t | ⊢ · = (.r‘𝑅) |
| rngsubdi.m | ⊢ − = (-g‘𝑅) |
| rngsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngsubdir | ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | rngsubdi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 5 | rnggrp 20061 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 7 | rngsubdi.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 3, 4, 6, 7 | grpinvcld 18885 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑌) ∈ 𝐵) |
| 9 | rngsubdi.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | rngsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 12 | 3, 10, 11 | rngdir 20064 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
| 13 | 1, 2, 8, 9, 12 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍))) |
| 14 | 3, 11, 4, 1, 7, 9 | rngmneg1 20070 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅)‘𝑌) · 𝑍) = ((invg‘𝑅)‘(𝑌 · 𝑍))) |
| 15 | 14 | oveq2d 7369 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑍)(+g‘𝑅)(((invg‘𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 16 | 13, 15 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 17 | rngsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 18 | 3, 10, 4, 17 | grpsubval 18882 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 19 | 2, 7, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌))) |
| 20 | 19 | oveq1d 7368 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋(+g‘𝑅)((invg‘𝑅)‘𝑌)) · 𝑍)) |
| 21 | 3, 11 | rngcl 20067 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 22 | 1, 2, 9, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 23 | 3, 11 | rngcl 20067 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 · 𝑍) ∈ 𝐵) |
| 24 | 1, 7, 9, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 · 𝑍) ∈ 𝐵) |
| 25 | 3, 10, 4, 17 | grpsubval 18882 | . . 3 ⊢ (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 26 | 22, 24, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑍) − (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g‘𝑅)((invg‘𝑅)‘(𝑌 · 𝑍)))) |
| 27 | 16, 20, 26 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Grpcgrp 18830 invgcminusg 18831 -gcsg 18832 Rngcrng 20055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-abl 19680 df-mgp 20044 df-rng 20056 |
| This theorem is referenced by: ringsubdir 20211 2idlcpblrng 21196 |
| Copyright terms: Public domain | W3C validator |