MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Visualization version   GIF version

Theorem rngsubdir 20129
Description: Ring multiplication distributes over subtraction. (subdir 11685 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdir 20261. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b 𝐵 = (Base‘𝑅)
rngsubdi.t · = (.r𝑅)
rngsubdi.m = (-g𝑅)
rngsubdi.r (𝜑𝑅 ∈ Rng)
rngsubdi.x (𝜑𝑋𝐵)
rngsubdi.y (𝜑𝑌𝐵)
rngsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdir (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngsubdi.x . . . 4 (𝜑𝑋𝐵)
3 rngsubdi.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2725 . . . . 5 (invg𝑅) = (invg𝑅)
5 rnggrp 20115 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
61, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
7 rngsubdi.y . . . . 5 (𝜑𝑌𝐵)
83, 4, 6, 7grpinvcld 18958 . . . 4 (𝜑 → ((invg𝑅)‘𝑌) ∈ 𝐵)
9 rngsubdi.z . . . 4 (𝜑𝑍𝐵)
10 eqid 2725 . . . . 5 (+g𝑅) = (+g𝑅)
11 rngsubdi.t . . . . 5 · = (.r𝑅)
123, 10, 11rngdir 20118 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
131, 2, 8, 9, 12syl13anc 1369 . . 3 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
143, 11, 4, 1, 7, 9rngmneg1 20124 . . . 4 (𝜑 → (((invg𝑅)‘𝑌) · 𝑍) = ((invg𝑅)‘(𝑌 · 𝑍)))
1514oveq2d 7435 . . 3 (𝜑 → ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
1613, 15eqtrd 2765 . 2 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
17 rngsubdi.m . . . . 5 = (-g𝑅)
183, 10, 4, 17grpsubval 18955 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
192, 7, 18syl2anc 582 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
2019oveq1d 7434 . 2 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍))
213, 11rngcl 20121 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
221, 2, 9, 21syl3anc 1368 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
233, 11rngcl 20121 . . . 4 ((𝑅 ∈ Rng ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
241, 7, 9, 23syl3anc 1368 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
253, 10, 4, 17grpsubval 18955 . . 3 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2622, 24, 25syl2anc 582 . 2 (𝜑 → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2716, 20, 263eqtr4d 2775 1 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17188  +gcplusg 17241  .rcmulr 17242  Grpcgrp 18903  invgcminusg 18904  -gcsg 18905  Rngcrng 20109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-plusg 17254  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-grp 18906  df-minusg 18907  df-sbg 18908  df-abl 19755  df-mgp 20092  df-rng 20110
This theorem is referenced by:  ringsubdir  20261  2idlcpblrng  21183
  Copyright terms: Public domain W3C validator