MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngrz Structured version   Visualization version   GIF version

Theorem rngrz 20193
Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 20317. (Revised by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rngrz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 20185 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rngcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rnglz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 19005 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2737 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 19007 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 585 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq2d 7454 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · ( 0 (+g𝑅) 0 )) = (𝑋 · 0 ))
10 simpr 484 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
112, 3rng0cl 20190 . . . . . 6 (𝑅 ∈ Rng → 0𝐵)
1211adantr 480 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
1310, 12, 123jca 1129 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋𝐵0𝐵0𝐵))
14 rngcl.t . . . . 5 · = (.r𝑅)
152, 5, 14rngdi 20187 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵0𝐵0𝐵)) → (𝑋 · ( 0 (+g𝑅) 0 )) = ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )))
1613, 15syldan 591 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · ( 0 (+g𝑅) 0 )) = ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )))
171adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
182, 14rngcl 20191 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵0𝐵) → (𝑋 · 0 ) ∈ 𝐵)
1912, 18mpd3an3 1463 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) ∈ 𝐵)
202, 5, 3grplid 19007 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 0 )) = (𝑋 · 0 ))
2120eqcomd 2743 . . . 4 ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g𝑅)(𝑋 · 0 )))
2217, 19, 21syl2anc 584 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = ( 0 (+g𝑅)(𝑋 · 0 )))
239, 16, 223eqtr3d 2785 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )))
242, 5grprcan 19013 . . 3 ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵0𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 ))
2517, 19, 12, 19, 24syl13anc 1373 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (((𝑋 · 0 )(+g𝑅)(𝑋 · 0 )) = ( 0 (+g𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 ))
2623, 25mpbid 232 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  .rcmulr 17308  0gc0g 17495  Grpcgrp 18973  Rngcrng 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-abl 19825  df-mgp 20162  df-rng 20180
This theorem is referenced by:  rngmneg2  20195  ringrz  20317  cntzsubrng  20593  rnglidl0  21266
  Copyright terms: Public domain W3C validator