| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngrz | Structured version Visualization version GIF version | ||
| Description: The zero of a non-unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringrz 20212. (Revised by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcl.t | ⊢ · = (.r‘𝑅) |
| rnglz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rngrz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20076 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18878 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | 2, 5, 3 | grplid 18880 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 7 | 1, 4, 6 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 9 | 8 | oveq2d 7362 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = (𝑋 · 0 )) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 11 | 2, 3 | rng0cl 20081 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 13 | 10, 12, 12 | 3jca 1128 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
| 14 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 15 | 2, 5, 14 | rngdi 20078 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
| 16 | 13, 15 | syldan 591 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · ( 0 (+g‘𝑅) 0 )) = ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 ))) |
| 17 | 1 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 18 | 2, 14 | rngcl 20082 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
| 19 | 12, 18 | mpd3an3 1464 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) ∈ 𝐵) |
| 20 | 2, 5, 3 | grplid 18880 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → ( 0 (+g‘𝑅)(𝑋 · 0 )) = (𝑋 · 0 )) |
| 21 | 20 | eqcomd 2737 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 0 ) ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 22 | 17, 19, 21 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 23 | 9, 16, 22 | 3eqtr3d 2774 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 ))) |
| 24 | 2, 5 | grprcan 18886 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ ((𝑋 · 0 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ (𝑋 · 0 ) ∈ 𝐵)) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
| 25 | 17, 19, 12, 19, 24 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (((𝑋 · 0 )(+g‘𝑅)(𝑋 · 0 )) = ( 0 (+g‘𝑅)(𝑋 · 0 )) ↔ (𝑋 · 0 ) = 0 )) |
| 26 | 23, 25 | mpbid 232 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Grpcgrp 18846 Rngcrng 20070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-abl 19695 df-mgp 20059 df-rng 20071 |
| This theorem is referenced by: rngmneg2 20086 ringrz 20212 cntzsubrng 20482 rnglidl0 21166 |
| Copyright terms: Public domain | W3C validator |