| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmneg1 | Structured version Visualization version GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg1 11553 analog). In contrast to ringmneg1 20222, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg1 | ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 20076 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grprinvd 18908 | . . . . 5 ⊢ (𝜑 → (𝑋(+g‘𝑅)(𝑁‘𝑋)) = (0g‘𝑅)) |
| 10 | 9 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((0g‘𝑅) · 𝑌)) |
| 11 | rngneglmul.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rnglz 20083 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑌 ∈ 𝐵) → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((0g‘𝑅) · 𝑌) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 20082 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 8, 11, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 18901 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 20082 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 20 | 5, 18, 11, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid1 18904 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ ((𝑁‘𝑋) · 𝑌) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdir 20079 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌))) |
| 24 | 23 | eqcomd 2737 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 25 | 5, 8, 18, 11, 24 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌)) |
| 26 | 25 | eqeq1d 2733 | . . . 4 ⊢ (𝜑 → (((𝑋 · 𝑌)(+g‘𝑅)((𝑁‘𝑋) · 𝑌)) = (0g‘𝑅) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌) ↔ ((𝑋(+g‘𝑅)(𝑁‘𝑋)) · 𝑌) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = ((𝑁‘𝑋) · 𝑌)) |
| 29 | 28 | eqcomd 2737 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 Rngcrng 20070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-abl 19695 df-mgp 20059 df-rng 20071 |
| This theorem is referenced by: rngm2neg 20087 rngsubdir 20090 cntzsubrng 20482 |
| Copyright terms: Public domain | W3C validator |