![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngmneg1 | Structured version Visualization version GIF version |
Description: Negation of a product in a non-unital ring (mulneg1 11649 analog). In contrast to ringmneg1 20115, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
Ref | Expression |
---|---|
rngneglmul.b | โข ๐ต = (Baseโ๐ ) |
rngneglmul.t | โข ยท = (.rโ๐ ) |
rngneglmul.n | โข ๐ = (invgโ๐ ) |
rngneglmul.r | โข (๐ โ ๐ โ Rng) |
rngneglmul.x | โข (๐ โ ๐ โ ๐ต) |
rngneglmul.y | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
rngmneg1 | โข (๐ โ ((๐โ๐) ยท ๐) = (๐โ(๐ ยท ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | . . . . . 6 โข ๐ต = (Baseโ๐ ) | |
2 | eqid 2732 | . . . . . 6 โข (+gโ๐ ) = (+gโ๐ ) | |
3 | eqid 2732 | . . . . . 6 โข (0gโ๐ ) = (0gโ๐ ) | |
4 | rngneglmul.n | . . . . . 6 โข ๐ = (invgโ๐ ) | |
5 | rngneglmul.r | . . . . . . 7 โข (๐ โ ๐ โ Rng) | |
6 | rnggrp 46644 | . . . . . . 7 โข (๐ โ Rng โ ๐ โ Grp) | |
7 | 5, 6 | syl 17 | . . . . . 6 โข (๐ โ ๐ โ Grp) |
8 | rngneglmul.x | . . . . . 6 โข (๐ โ ๐ โ ๐ต) | |
9 | 1, 2, 3, 4, 7, 8 | grprinvd 18879 | . . . . 5 โข (๐ โ (๐(+gโ๐ )(๐โ๐)) = (0gโ๐ )) |
10 | 9 | oveq1d 7423 | . . . 4 โข (๐ โ ((๐(+gโ๐ )(๐โ๐)) ยท ๐) = ((0gโ๐ ) ยท ๐)) |
11 | rngneglmul.y | . . . . 5 โข (๐ โ ๐ โ ๐ต) | |
12 | rngneglmul.t | . . . . . 6 โข ยท = (.rโ๐ ) | |
13 | 1, 12, 3 | rnglz 46654 | . . . . 5 โข ((๐ โ Rng โง ๐ โ ๐ต) โ ((0gโ๐ ) ยท ๐) = (0gโ๐ )) |
14 | 5, 11, 13 | syl2anc 584 | . . . 4 โข (๐ โ ((0gโ๐ ) ยท ๐) = (0gโ๐ )) |
15 | 10, 14 | eqtrd 2772 | . . 3 โข (๐ โ ((๐(+gโ๐ )(๐โ๐)) ยท ๐) = (0gโ๐ )) |
16 | 1, 12 | rngcl 46653 | . . . . . 6 โข ((๐ โ Rng โง ๐ โ ๐ต โง ๐ โ ๐ต) โ (๐ ยท ๐) โ ๐ต) |
17 | 5, 8, 11, 16 | syl3anc 1371 | . . . . 5 โข (๐ โ (๐ ยท ๐) โ ๐ต) |
18 | 1, 4, 7, 8 | grpinvcld 18872 | . . . . . 6 โข (๐ โ (๐โ๐) โ ๐ต) |
19 | 1, 12 | rngcl 46653 | . . . . . 6 โข ((๐ โ Rng โง (๐โ๐) โ ๐ต โง ๐ โ ๐ต) โ ((๐โ๐) ยท ๐) โ ๐ต) |
20 | 5, 18, 11, 19 | syl3anc 1371 | . . . . 5 โข (๐ โ ((๐โ๐) ยท ๐) โ ๐ต) |
21 | 1, 2, 3, 4 | grpinvid1 18875 | . . . . 5 โข ((๐ โ Grp โง (๐ ยท ๐) โ ๐ต โง ((๐โ๐) ยท ๐) โ ๐ต) โ ((๐โ(๐ ยท ๐)) = ((๐โ๐) ยท ๐) โ ((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐)) = (0gโ๐ ))) |
22 | 7, 17, 20, 21 | syl3anc 1371 | . . . 4 โข (๐ โ ((๐โ(๐ ยท ๐)) = ((๐โ๐) ยท ๐) โ ((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐)) = (0gโ๐ ))) |
23 | 1, 2, 12 | rngdir 46650 | . . . . . . 7 โข ((๐ โ Rng โง (๐ โ ๐ต โง (๐โ๐) โ ๐ต โง ๐ โ ๐ต)) โ ((๐(+gโ๐ )(๐โ๐)) ยท ๐) = ((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐))) |
24 | 23 | eqcomd 2738 | . . . . . 6 โข ((๐ โ Rng โง (๐ โ ๐ต โง (๐โ๐) โ ๐ต โง ๐ โ ๐ต)) โ ((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐)) = ((๐(+gโ๐ )(๐โ๐)) ยท ๐)) |
25 | 5, 8, 18, 11, 24 | syl13anc 1372 | . . . . 5 โข (๐ โ ((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐)) = ((๐(+gโ๐ )(๐โ๐)) ยท ๐)) |
26 | 25 | eqeq1d 2734 | . . . 4 โข (๐ โ (((๐ ยท ๐)(+gโ๐ )((๐โ๐) ยท ๐)) = (0gโ๐ ) โ ((๐(+gโ๐ )(๐โ๐)) ยท ๐) = (0gโ๐ ))) |
27 | 22, 26 | bitrd 278 | . . 3 โข (๐ โ ((๐โ(๐ ยท ๐)) = ((๐โ๐) ยท ๐) โ ((๐(+gโ๐ )(๐โ๐)) ยท ๐) = (0gโ๐ ))) |
28 | 15, 27 | mpbird 256 | . 2 โข (๐ โ (๐โ(๐ ยท ๐)) = ((๐โ๐) ยท ๐)) |
29 | 28 | eqcomd 2738 | 1 โข (๐ โ ((๐โ๐) ยท ๐) = (๐โ(๐ ยท ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 0gc0g 17384 Grpcgrp 18818 invgcminusg 18819 Rngcrng 46638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-abl 19650 df-mgp 19987 df-rng 46639 |
This theorem is referenced by: rngm2neg 46658 rngsubdir 46661 cntzsubrng 46736 |
Copyright terms: Public domain | W3C validator |