| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidl1 | Structured version Visualization version GIF version | ||
| Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 21163. (Contributed by AV, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| rnglidl1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidl1 | ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | eqimssi 3993 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑅) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ⊆ (Base‘𝑅)) |
| 4 | rnggrp 20069 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 5 | 1 | grpbn0 18871 | . . 3 ⊢ (𝑅 ∈ Grp → 𝐵 ≠ ∅) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ≠ ∅) |
| 7 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 8 | 4 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Grp) |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Rng) | |
| 10 | 1 | eqcomi 2739 | . . . . . . . . 9 ⊢ (Base‘𝑅) = 𝐵 |
| 11 | 10 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ 𝐵) |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ (Base‘𝑅) → 𝑥 ∈ 𝐵) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 15 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 16 | eqid 2730 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 17 | 1, 16 | rngcl 20075 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 18 | 9, 14, 15, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 19 | simpr3 1197 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 20 | 1, 7, 8, 18, 19 | grpcld 18852 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) |
| 21 | 20 | ralrimivvva 3176 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) |
| 22 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 23 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 22, 23, 7, 16 | islidl 21145 | . 2 ⊢ (𝐵 ∈ 𝑈 ↔ (𝐵 ⊆ (Base‘𝑅) ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵)) |
| 25 | 3, 6, 21, 24 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ⊆ wss 3900 ∅c0 4281 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 .rcmulr 17154 Grpcgrp 18838 Rngcrng 20063 LIdealclidl 21136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-sca 17169 df-vsca 17170 df-ip 17171 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-abl 19688 df-mgp 20052 df-rng 20064 df-lss 20858 df-sra 21100 df-rgmod 21101 df-lidl 21138 |
| This theorem is referenced by: lidl1 21163 |
| Copyright terms: Public domain | W3C validator |