|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rnglidl1 | Structured version Visualization version GIF version | ||
| Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 21243. (Contributed by AV, 19-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) | 
| rnglidl1.b | ⊢ 𝐵 = (Base‘𝑅) | 
| Ref | Expression | 
|---|---|
| rnglidl1 | ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnglidl1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | eqimssi 4044 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑅) | 
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ⊆ (Base‘𝑅)) | 
| 4 | rnggrp 20155 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 5 | 1 | grpbn0 18984 | . . 3 ⊢ (𝑅 ∈ Grp → 𝐵 ≠ ∅) | 
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ≠ ∅) | 
| 7 | eqid 2737 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 8 | 4 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Grp) | 
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Rng) | |
| 10 | 1 | eqcomi 2746 | . . . . . . . . 9 ⊢ (Base‘𝑅) = 𝐵 | 
| 11 | 10 | eleq2i 2833 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ 𝐵) | 
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ (Base‘𝑅) → 𝑥 ∈ 𝐵) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | 
| 15 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 16 | eqid 2737 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 17 | 1, 16 | rngcl 20161 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) | 
| 18 | 9, 14, 15, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) | 
| 19 | simpr3 1197 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 20 | 1, 7, 8, 18, 19 | grpcld 18965 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 21 | 20 | ralrimivvva 3205 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) | 
| 22 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 23 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 22, 23, 7, 16 | islidl 21225 | . 2 ⊢ (𝐵 ∈ 𝑈 ↔ (𝐵 ⊆ (Base‘𝑅) ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵)) | 
| 25 | 3, 6, 21, 24 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3951 ∅c0 4333 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Grpcgrp 18951 Rngcrng 20149 LIdealclidl 21216 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-sca 17313 df-vsca 17314 df-ip 17315 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-abl 19801 df-mgp 20138 df-rng 20150 df-lss 20930 df-sra 21172 df-rgmod 21173 df-lidl 21218 | 
| This theorem is referenced by: lidl1 21243 | 
| Copyright terms: Public domain | W3C validator |