| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidl1 | Structured version Visualization version GIF version | ||
| Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 21150. (Contributed by AV, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnglidl0.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| rnglidl1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidl1 | ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | eqimssi 4010 | . . 3 ⊢ 𝐵 ⊆ (Base‘𝑅) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ⊆ (Base‘𝑅)) |
| 4 | rnggrp 20074 | . . 3 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 5 | 1 | grpbn0 18905 | . . 3 ⊢ (𝑅 ∈ Grp → 𝐵 ≠ ∅) |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Rng → 𝐵 ≠ ∅) |
| 7 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 8 | 4 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Grp) |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 ∈ Rng) | |
| 10 | 1 | eqcomi 2739 | . . . . . . . . 9 ⊢ (Base‘𝑅) = 𝐵 |
| 11 | 10 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝑥 ∈ (Base‘𝑅) ↔ 𝑥 ∈ 𝐵) |
| 12 | 11 | biimpi 216 | . . . . . . 7 ⊢ (𝑥 ∈ (Base‘𝑅) → 𝑥 ∈ 𝐵) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 15 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 16 | eqid 2730 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 17 | 1, 16 | rngcl 20080 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 18 | 9, 14, 15, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 19 | simpr3 1197 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | |
| 20 | 1, 7, 8, 18, 19 | grpcld 18886 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) |
| 21 | 20 | ralrimivvva 3184 | . 2 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵) |
| 22 | rnglidl0.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 23 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 22, 23, 7, 16 | islidl 21132 | . 2 ⊢ (𝐵 ∈ 𝑈 ↔ (𝐵 ⊆ (Base‘𝑅) ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)𝑧) ∈ 𝐵)) |
| 25 | 3, 6, 21, 24 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ Rng → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Grpcgrp 18872 Rngcrng 20068 LIdealclidl 21123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-abl 19720 df-mgp 20057 df-rng 20069 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 |
| This theorem is referenced by: lidl1 21150 |
| Copyright terms: Public domain | W3C validator |