![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngfulem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for rngqiprngfu 46802 (and lemma for rngqiprngu 46803). (Contributed by AV, 16-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | β’ (π β π β Rng) |
rngqiprngfu.i | β’ (π β πΌ β (2Idealβπ )) |
rngqiprngfu.j | β’ π½ = (π βΎs πΌ) |
rngqiprngfu.u | β’ (π β π½ β Ring) |
rngqiprngfu.b | β’ π΅ = (Baseβπ ) |
rngqiprngfu.t | β’ Β· = (.rβπ ) |
rngqiprngfu.1 | β’ 1 = (1rβπ½) |
rngqiprngfu.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngfu.q | β’ π = (π /s βΌ ) |
rngqiprngfu.v | β’ (π β π β Ring) |
rngqiprngfu.e | β’ (π β πΈ β (1rβπ)) |
rngqiprngfu.m | β’ β = (-gβπ ) |
rngqiprngfu.a | β’ + = (+gβπ ) |
rngqiprngfu.n | β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) |
Ref | Expression |
---|---|
rngqiprngfulem3 | β’ (π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.n | . 2 β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) | |
2 | rngqiprngfu.b | . . 3 β’ π΅ = (Baseβπ ) | |
3 | rngqiprngfu.a | . . 3 β’ + = (+gβπ ) | |
4 | rngqiprngfu.r | . . . 4 β’ (π β π β Rng) | |
5 | rnggrp 46654 | . . . 4 β’ (π β Rng β π β Grp) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β π β Grp) |
7 | rngqiprngfu.i | . . . . 5 β’ (π β πΌ β (2Idealβπ )) | |
8 | rngqiprngfu.j | . . . . 5 β’ π½ = (π βΎs πΌ) | |
9 | rngqiprngfu.u | . . . . 5 β’ (π β π½ β Ring) | |
10 | rngqiprngfu.t | . . . . 5 β’ Β· = (.rβπ ) | |
11 | rngqiprngfu.1 | . . . . 5 β’ 1 = (1rβπ½) | |
12 | rngqiprngfu.g | . . . . 5 β’ βΌ = (π ~QG πΌ) | |
13 | rngqiprngfu.q | . . . . 5 β’ π = (π /s βΌ ) | |
14 | rngqiprngfu.v | . . . . 5 β’ (π β π β Ring) | |
15 | rngqiprngfu.e | . . . . 5 β’ (π β πΈ β (1rβπ)) | |
16 | 4, 7, 8, 9, 2, 10, 11, 12, 13, 14, 15 | rngqiprngfulem2 46797 | . . . 4 β’ (π β πΈ β π΅) |
17 | 4, 7, 8, 9, 2, 10, 11 | rngqiprng1elbas 46771 | . . . . 5 β’ (π β 1 β π΅) |
18 | 2, 10 | rngcl 46663 | . . . . 5 β’ ((π β Rng β§ 1 β π΅ β§ πΈ β π΅) β ( 1 Β· πΈ) β π΅) |
19 | 4, 17, 16, 18 | syl3anc 1372 | . . . 4 β’ (π β ( 1 Β· πΈ) β π΅) |
20 | rngqiprngfu.m | . . . . 5 β’ β = (-gβπ ) | |
21 | 2, 20 | grpsubcl 18903 | . . . 4 β’ ((π β Grp β§ πΈ β π΅ β§ ( 1 Β· πΈ) β π΅) β (πΈ β ( 1 Β· πΈ)) β π΅) |
22 | 6, 16, 19, 21 | syl3anc 1372 | . . 3 β’ (π β (πΈ β ( 1 Β· πΈ)) β π΅) |
23 | 2, 3, 6, 22, 17 | grpcld 18833 | . 2 β’ (π β ((πΈ β ( 1 Β· πΈ)) + 1 ) β π΅) |
24 | 1, 23 | eqeltrid 2838 | 1 β’ (π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 βΎs cress 17173 +gcplusg 17197 .rcmulr 17198 /s cqus 17451 Grpcgrp 18819 -gcsg 18821 ~QG cqg 19002 1rcur 20004 Ringcrg 20056 2Idealc2idl 20856 Rngcrng 46648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-ec 8705 df-qs 8709 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-0g 17387 df-imas 17454 df-qus 17455 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-eqg 19005 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-lss 20543 df-sra 20785 df-rgmod 20786 df-lidl 20787 df-2idl 20857 df-rng 46649 |
This theorem is referenced by: rngqiprngfulem4 46799 rngqiprngfu 46802 rngqiprngu 46803 |
Copyright terms: Public domain | W3C validator |