| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rngqiprngfu 21265 (and lemma for rngqiprngu 21266). (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem3 | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . 2 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | rngqiprngfu.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngqiprngfu.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rnggrp 20105 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 7 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 8 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 9 | rngqiprngfu.u | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 10 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 11 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 12 | rngqiprngfu.g | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 13 | rngqiprngfu.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 14 | rngqiprngfu.v | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 15 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 16 | 4, 7, 8, 9, 2, 10, 11, 12, 13, 14, 15 | rngqiprngfulem2 21260 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 17 | 4, 7, 8, 9, 2, 10, 11 | rngqiprng1elbas 21234 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 18 | 2, 10 | rngcl 20111 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 19 | 4, 17, 16, 18 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 20 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 21 | 2, 20 | grpsubcl 18990 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 22 | 6, 16, 19, 21 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 23 | 2, 3, 6, 22, 17 | grpcld 18917 | . 2 ⊢ (𝜑 → ((𝐸 − ( 1 · 𝐸)) + 1 ) ∈ 𝐵) |
| 24 | 1, 23 | eqeltrid 2837 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 ↾s cress 17238 +gcplusg 17258 .rcmulr 17259 /s cqus 17506 Grpcgrp 18903 -gcsg 18905 ~QG cqg 19092 Rngcrng 20099 1rcur 20128 Ringcrg 20180 2Idealc2idl 21197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-ec 8716 df-qs 8720 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-sup 9449 df-inf 9450 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-0g 17442 df-imas 17509 df-qus 17510 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-minusg 18907 df-sbg 18908 df-eqg 19095 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-lss 20876 df-sra 21118 df-rgmod 21119 df-lidl 21156 df-2idl 21198 |
| This theorem is referenced by: rngqiprngfulem4 21262 rngqiprngfu 21265 rngqiprngu 21266 |
| Copyright terms: Public domain | W3C validator |