MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngmneg2 Structured version   Visualization version   GIF version

Theorem rngmneg2 20126
Description: Negation of a product in a non-unital ring (mulneg2 11672 analog). In contrast to ringmneg2 20263, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b 𝐵 = (Base‘𝑅)
rngneglmul.t · = (.r𝑅)
rngneglmul.n 𝑁 = (invg𝑅)
rngneglmul.r (𝜑𝑅 ∈ Rng)
rngneglmul.x (𝜑𝑋𝐵)
rngneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
rngmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem rngmneg2
StepHypRef Expression
1 rngneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2735 . . . . . 6 (+g𝑅) = (+g𝑅)
3 eqid 2735 . . . . . 6 (0g𝑅) = (0g𝑅)
4 rngneglmul.n . . . . . 6 𝑁 = (invg𝑅)
5 rngneglmul.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
6 rnggrp 20116 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 rngneglmul.y . . . . . 6 (𝜑𝑌𝐵)
91, 2, 3, 4, 7, 8grplinvd 18975 . . . . 5 (𝜑 → ((𝑁𝑌)(+g𝑅)𝑌) = (0g𝑅))
109oveq2d 7419 . . . 4 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (𝑋 · (0g𝑅)))
11 rngneglmul.x . . . . 5 (𝜑𝑋𝐵)
12 rngneglmul.t . . . . . 6 · = (.r𝑅)
131, 12, 3rngrz 20124 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
145, 11, 13syl2anc 584 . . . 4 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
1510, 14eqtrd 2770 . . 3 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅))
161, 12rngcl 20122 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
175, 11, 8, 16syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
181, 4, 7, 8grpinvcld 18969 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ 𝐵)
191, 12rngcl 20122 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
205, 11, 18, 19syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 4grpinvid2 18973 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
227, 17, 20, 21syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
231, 2, 12rngdi 20118 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)))
2423eqcomd 2741 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
255, 11, 18, 8, 24syl13anc 1374 . . . . 5 (𝜑 → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
2625eqeq1d 2737 . . . 4 (𝜑 → (((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2722, 26bitrd 279 . . 3 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2815, 27mpbird 257 . 2 (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)))
2928eqcomd 2741 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6530  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  0gc0g 17451  Grpcgrp 18914  invgcminusg 18915  Rngcrng 20110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-plusg 17282  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-minusg 18918  df-abl 19762  df-mgp 20099  df-rng 20111
This theorem is referenced by:  rngm2neg  20127  rngsubdi  20129  cntzsubrng  20525
  Copyright terms: Public domain W3C validator