![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngmneg2 | Structured version Visualization version GIF version |
Description: Negation of a product in a non-unital ring (mulneg2 11697 analog). In contrast to ringmneg2 20318, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
Ref | Expression |
---|---|
rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
rngneglmul.t | ⊢ · = (.r‘𝑅) |
rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
rngmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2734 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | eqid 2734 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
6 | rnggrp 20175 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | rngneglmul.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 7, 8 | grplinvd 19024 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑌)(+g‘𝑅)𝑌) = (0g‘𝑅)) |
10 | 9 | oveq2d 7446 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (𝑋 · (0g‘𝑅))) |
11 | rngneglmul.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
13 | 1, 12, 3 | rngrz 20183 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
14 | 5, 11, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
15 | 10, 14 | eqtrd 2774 | . . 3 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅)) |
16 | 1, 12 | rngcl 20181 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
17 | 5, 11, 8, 16 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
18 | 1, 4, 7, 8 | grpinvcld 19018 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
19 | 1, 12 | rngcl 20181 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
20 | 5, 11, 18, 19 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
21 | 1, 2, 3, 4 | grpinvid2 19022 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
22 | 7, 17, 20, 21 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
23 | 1, 2, 12 | rngdi 20177 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌))) |
24 | 23 | eqcomd 2740 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
25 | 5, 11, 18, 8, 24 | syl13anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
26 | 25 | eqeq1d 2736 | . . . 4 ⊢ (𝜑 → (((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
27 | 22, 26 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
28 | 15, 27 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌))) |
29 | 28 | eqcomd 2740 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 0gc0g 17485 Grpcgrp 18963 invgcminusg 18964 Rngcrng 20169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-abl 19815 df-mgp 20152 df-rng 20170 |
This theorem is referenced by: rngm2neg 20186 rngsubdi 20188 cntzsubrng 20583 |
Copyright terms: Public domain | W3C validator |