MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngmneg2 Structured version   Visualization version   GIF version

Theorem rngmneg2 20165
Description: Negation of a product in a non-unital ring (mulneg2 11700 analog). In contrast to ringmneg2 20302, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
rngneglmul.b 𝐵 = (Base‘𝑅)
rngneglmul.t · = (.r𝑅)
rngneglmul.n 𝑁 = (invg𝑅)
rngneglmul.r (𝜑𝑅 ∈ Rng)
rngneglmul.x (𝜑𝑋𝐵)
rngneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
rngmneg2 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem rngmneg2
StepHypRef Expression
1 rngneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2737 . . . . . 6 (+g𝑅) = (+g𝑅)
3 eqid 2737 . . . . . 6 (0g𝑅) = (0g𝑅)
4 rngneglmul.n . . . . . 6 𝑁 = (invg𝑅)
5 rngneglmul.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
6 rnggrp 20155 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 rngneglmul.y . . . . . 6 (𝜑𝑌𝐵)
91, 2, 3, 4, 7, 8grplinvd 19012 . . . . 5 (𝜑 → ((𝑁𝑌)(+g𝑅)𝑌) = (0g𝑅))
109oveq2d 7447 . . . 4 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (𝑋 · (0g𝑅)))
11 rngneglmul.x . . . . 5 (𝜑𝑋𝐵)
12 rngneglmul.t . . . . . 6 · = (.r𝑅)
131, 12, 3rngrz 20163 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
145, 11, 13syl2anc 584 . . . 4 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
1510, 14eqtrd 2777 . . 3 (𝜑 → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅))
161, 12rngcl 20161 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
175, 11, 8, 16syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
181, 4, 7, 8grpinvcld 19006 . . . . . 6 (𝜑 → (𝑁𝑌) ∈ 𝐵)
191, 12rngcl 20161 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
205, 11, 18, 19syl3anc 1373 . . . . 5 (𝜑 → (𝑋 · (𝑁𝑌)) ∈ 𝐵)
211, 2, 3, 4grpinvid2 19010 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
227, 17, 20, 21syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅)))
231, 2, 12rngdi 20157 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)))
2423eqcomd 2743 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵𝑌𝐵)) → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
255, 11, 18, 8, 24syl13anc 1374 . . . . 5 (𝜑 → ((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)))
2625eqeq1d 2739 . . . 4 (𝜑 → (((𝑋 · (𝑁𝑌))(+g𝑅)(𝑋 · 𝑌)) = (0g𝑅) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2722, 26bitrd 279 . . 3 (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)) ↔ (𝑋 · ((𝑁𝑌)(+g𝑅)𝑌)) = (0g𝑅)))
2815, 27mpbird 257 . 2 (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁𝑌)))
2928eqcomd 2743 1 (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  Rngcrng 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-abl 19801  df-mgp 20138  df-rng 20150
This theorem is referenced by:  rngm2neg  20166  rngsubdi  20168  cntzsubrng  20567
  Copyright terms: Public domain W3C validator