| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmneg2 | Structured version Visualization version GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg2 11591 analog). In contrast to ringmneg2 20190, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 20043 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grplinvd 18902 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑌)(+g‘𝑅)𝑌) = (0g‘𝑅)) |
| 10 | 9 | oveq2d 7385 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (𝑋 · (0g‘𝑅))) |
| 11 | rngneglmul.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rngrz 20051 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 20049 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 11, 8, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 18896 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 20049 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 20 | 5, 11, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid2 18900 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdi 20045 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌))) |
| 24 | 23 | eqcomd 2735 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 25 | 5, 11, 18, 8, 24 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 26 | 25 | eqeq1d 2731 | . . . 4 ⊢ (𝜑 → (((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌))) |
| 29 | 28 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 0gc0g 17378 Grpcgrp 18841 invgcminusg 18842 Rngcrng 20037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-abl 19689 df-mgp 20026 df-rng 20038 |
| This theorem is referenced by: rngm2neg 20054 rngsubdi 20056 cntzsubrng 20452 |
| Copyright terms: Public domain | W3C validator |