| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmneg2 | Structured version Visualization version GIF version | ||
| Description: Negation of a product in a non-unital ring (mulneg2 11557 analog). In contrast to ringmneg2 20190, the proof does not (and cannot) make use of the existence of a ring unity. (Contributed by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngmneg2 | ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | rngneglmul.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 5 | rngneglmul.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rnggrp 20043 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 7, 8 | grplinvd 18873 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑌)(+g‘𝑅)𝑌) = (0g‘𝑅)) |
| 10 | 9 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (𝑋 · (0g‘𝑅))) |
| 11 | rngneglmul.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | rngneglmul.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 12, 3 | rngrz 20051 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 14 | 5, 11, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
| 15 | 10, 14 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅)) |
| 16 | 1, 12 | rngcl 20049 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 17 | 5, 11, 8, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 18 | 1, 4, 7, 8 | grpinvcld 18867 | . . . . . 6 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 19 | 1, 12 | rngcl 20049 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 20 | 5, 11, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) |
| 21 | 1, 2, 3, 4 | grpinvid2 18871 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · (𝑁‘𝑌)) ∈ 𝐵) → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 22 | 7, 17, 20, 21 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅))) |
| 23 | 1, 2, 12 | rngdi 20045 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌))) |
| 24 | 23 | eqcomd 2735 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 25 | 5, 11, 18, 8, 24 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌))) |
| 26 | 25 | eqeq1d 2731 | . . . 4 ⊢ (𝜑 → (((𝑋 · (𝑁‘𝑌))(+g‘𝑅)(𝑋 · 𝑌)) = (0g‘𝑅) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 27 | 22, 26 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌)) ↔ (𝑋 · ((𝑁‘𝑌)(+g‘𝑅)𝑌)) = (0g‘𝑅))) |
| 28 | 15, 27 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · 𝑌)) = (𝑋 · (𝑁‘𝑌))) |
| 29 | 28 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 Rngcrng 20037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-abl 19662 df-mgp 20026 df-rng 20038 |
| This theorem is referenced by: rngm2neg 20054 rngsubdi 20056 cntzsubrng 20452 |
| Copyright terms: Public domain | W3C validator |