Step | Hyp | Ref
| Expression |
1 | | rngqiprngfu.n |
. . . 4
β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) |
2 | 1 | oveq2i 7420 |
. . 3
β’ ( 1 Β· π) = ( 1 Β· ((πΈ β ( 1 Β· πΈ)) + 1 )) |
3 | 2 | a1i 11 |
. 2
β’ (π β ( 1 Β· π) = ( 1 Β· ((πΈ β ( 1 Β· πΈ)) + 1 ))) |
4 | | rngqiprngfu.r |
. . . 4
β’ (π β π
β Rng) |
5 | | rngqiprngfu.i |
. . . . 5
β’ (π β πΌ β (2Idealβπ
)) |
6 | | rngqiprngfu.j |
. . . . 5
β’ π½ = (π
βΎs πΌ) |
7 | | rngqiprngfu.u |
. . . . 5
β’ (π β π½ β Ring) |
8 | | rngqiprngfu.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
9 | | rngqiprngfu.t |
. . . . 5
β’ Β· =
(.rβπ
) |
10 | | rngqiprngfu.1 |
. . . . 5
β’ 1 =
(1rβπ½) |
11 | 4, 5, 6, 7, 8, 9, 10 | rngqiprng1elbas 46771 |
. . . 4
β’ (π β 1 β π΅) |
12 | | rnggrp 46654 |
. . . . . 6
β’ (π
β Rng β π
β Grp) |
13 | 4, 12 | syl 17 |
. . . . 5
β’ (π β π
β Grp) |
14 | | rngqiprngfu.g |
. . . . . 6
β’ βΌ =
(π
~QG
πΌ) |
15 | | rngqiprngfu.q |
. . . . . 6
β’ π = (π
/s βΌ ) |
16 | | rngqiprngfu.v |
. . . . . 6
β’ (π β π β Ring) |
17 | | rngqiprngfu.e |
. . . . . 6
β’ (π β πΈ β (1rβπ)) |
18 | 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17 | rngqiprngfulem2 46797 |
. . . . 5
β’ (π β πΈ β π΅) |
19 | 8, 9 | rngcl 46663 |
. . . . . 6
β’ ((π
β Rng β§ 1 β π΅ β§ πΈ β π΅) β ( 1 Β· πΈ) β π΅) |
20 | 4, 11, 18, 19 | syl3anc 1372 |
. . . . 5
β’ (π β ( 1 Β· πΈ) β π΅) |
21 | | rngqiprngfu.m |
. . . . . 6
β’ β =
(-gβπ
) |
22 | 8, 21 | grpsubcl 18903 |
. . . . 5
β’ ((π
β Grp β§ πΈ β π΅ β§ ( 1 Β· πΈ) β π΅) β (πΈ β ( 1 Β· πΈ)) β π΅) |
23 | 13, 18, 20, 22 | syl3anc 1372 |
. . . 4
β’ (π β (πΈ β ( 1 Β· πΈ)) β π΅) |
24 | | rngqiprngfu.a |
. . . . 5
β’ + =
(+gβπ
) |
25 | 8, 24, 9 | rngdi 46659 |
. . . 4
β’ ((π
β Rng β§ ( 1 β π΅ β§ (πΈ β ( 1 Β· πΈ)) β π΅ β§ 1 β π΅)) β ( 1 Β· ((πΈ β ( 1 Β· πΈ)) + 1 )) = (( 1 Β· (πΈ β ( 1 Β· πΈ))) + ( 1 Β· 1 ))) |
26 | 4, 11, 23, 11, 25 | syl13anc 1373 |
. . 3
β’ (π β ( 1 Β· ((πΈ β ( 1 Β· πΈ)) + 1 )) = (( 1 Β· (πΈ β ( 1 Β· πΈ))) + ( 1 Β· 1 ))) |
27 | 8, 9, 21, 4, 11, 18, 20 | rngsubdi 46670 |
. . . . 5
β’ (π β ( 1 Β· (πΈ β ( 1 Β· πΈ))) = (( 1 Β· πΈ) β ( 1 Β· ( 1 Β· πΈ)))) |
28 | 8, 9 | rngass 46658 |
. . . . . . . 8
β’ ((π
β Rng β§ ( 1 β π΅ β§ 1 β π΅ β§ πΈ β π΅)) β (( 1 Β· 1 ) Β· πΈ) = ( 1 Β· ( 1 Β· πΈ))) |
29 | 4, 11, 11, 18, 28 | syl13anc 1373 |
. . . . . . 7
β’ (π β (( 1 Β· 1 ) Β· πΈ) = ( 1 Β· ( 1 Β· πΈ))) |
30 | 6, 9 | ressmulr 17252 |
. . . . . . . . . . 11
β’ (πΌ β (2Idealβπ
) β Β· =
(.rβπ½)) |
31 | 5, 30 | syl 17 |
. . . . . . . . . 10
β’ (π β Β· =
(.rβπ½)) |
32 | 31 | oveqd 7426 |
. . . . . . . . 9
β’ (π β ( 1 Β· 1 ) = ( 1 (.rβπ½) 1 )) |
33 | | eqid 2733 |
. . . . . . . . . . 11
β’
(Baseβπ½) =
(Baseβπ½) |
34 | 33, 10 | ringidcl 20083 |
. . . . . . . . . 10
β’ (π½ β Ring β 1 β
(Baseβπ½)) |
35 | | eqid 2733 |
. . . . . . . . . . 11
β’
(.rβπ½) = (.rβπ½) |
36 | 33, 35, 10 | ringlidm 20086 |
. . . . . . . . . 10
β’ ((π½ β Ring β§ 1 β
(Baseβπ½)) β (
1
(.rβπ½)
1 ) =
1
) |
37 | 7, 34, 36 | syl2anc2 586 |
. . . . . . . . 9
β’ (π β ( 1 (.rβπ½) 1 ) = 1 ) |
38 | 32, 37 | eqtrd 2773 |
. . . . . . . 8
β’ (π β ( 1 Β· 1 ) = 1 ) |
39 | 38 | oveq1d 7424 |
. . . . . . 7
β’ (π β (( 1 Β· 1 ) Β· πΈ) = ( 1 Β· πΈ)) |
40 | 29, 39 | eqtr3d 2775 |
. . . . . 6
β’ (π β ( 1 Β· ( 1 Β· πΈ)) = ( 1 Β· πΈ)) |
41 | 40 | oveq2d 7425 |
. . . . 5
β’ (π β (( 1 Β· πΈ) β ( 1 Β· ( 1 Β· πΈ))) = (( 1 Β· πΈ) β ( 1 Β· πΈ))) |
42 | | eqid 2733 |
. . . . . . 7
β’
(0gβπ
) = (0gβπ
) |
43 | 8, 42, 21 | grpsubid 18907 |
. . . . . 6
β’ ((π
β Grp β§ ( 1 Β· πΈ) β π΅) β (( 1 Β· πΈ) β ( 1 Β· πΈ)) = (0gβπ
)) |
44 | 13, 20, 43 | syl2anc 585 |
. . . . 5
β’ (π β (( 1 Β· πΈ) β ( 1 Β· πΈ)) = (0gβπ
)) |
45 | 27, 41, 44 | 3eqtrd 2777 |
. . . 4
β’ (π β ( 1 Β· (πΈ β ( 1 Β· πΈ))) = (0gβπ
)) |
46 | 45, 38 | oveq12d 7427 |
. . 3
β’ (π β (( 1 Β· (πΈ β ( 1 Β· πΈ))) + ( 1 Β· 1 )) =
((0gβπ
)
+ 1
)) |
47 | 26, 46 | eqtrd 2773 |
. 2
β’ (π β ( 1 Β· ((πΈ β ( 1 Β· πΈ)) + 1 )) =
((0gβπ
)
+ 1
)) |
48 | 8, 24, 42, 13, 11 | grplidd 18854 |
. 2
β’ (π β
((0gβπ
)
+ 1 ) = 1
) |
49 | 3, 47, 48 | 3eqtrd 2777 |
1
β’ (π β ( 1 Β· π) = 1 ) |