![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngfulem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for rngqiprngfu 21350. (Contributed by AV, 16-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
Ref | Expression |
---|---|
rngqiprngfulem5 | ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.n | . . . 4 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
2 | 1 | oveq2i 7459 | . . 3 ⊢ ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
4 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
6 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
7 | rngqiprngfu.u | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
11 | 4, 5, 6, 7, 8, 9, 10 | rngqiprng1elbas 21319 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) |
12 | rnggrp 20185 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
14 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
15 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
16 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
17 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
18 | 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17 | rngqiprngfulem2 21345 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
19 | 8, 9 | rngcl 20191 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
20 | 4, 11, 18, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
21 | rngqiprngfu.m | . . . . . 6 ⊢ − = (-g‘𝑅) | |
22 | 8, 21 | grpsubcl 19060 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
23 | 13, 18, 20, 22 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
24 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
25 | 8, 24, 9 | rngdi 20187 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ (𝐸 − ( 1 · 𝐸)) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
26 | 4, 11, 23, 11, 25 | syl13anc 1372 | . . 3 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
27 | 8, 9, 21, 4, 11, 18, 20 | rngsubdi 20198 | . . . . 5 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸)))) |
28 | 8, 9 | rngass 20186 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
29 | 4, 11, 11, 18, 28 | syl13anc 1372 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
30 | 6, 9 | ressmulr 17366 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) |
31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → · = (.r‘𝐽)) |
32 | 31 | oveqd 7465 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 · 1 ) = ( 1 (.r‘𝐽) 1 )) |
33 | eqid 2740 | . . . . . . . . . . 11 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
34 | 33, 10 | ringidcl 20289 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
35 | eqid 2740 | . . . . . . . . . . 11 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
36 | 33, 35, 10 | ringlidm 20292 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r‘𝐽) 1 ) = 1 ) |
37 | 7, 34, 36 | syl2anc2 584 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 (.r‘𝐽) 1 ) = 1 ) |
38 | 32, 37 | eqtrd 2780 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 1 ) = 1 ) |
39 | 38 | oveq1d 7463 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · 𝐸)) |
40 | 29, 39 | eqtr3d 2782 | . . . . . 6 ⊢ (𝜑 → ( 1 · ( 1 · 𝐸)) = ( 1 · 𝐸)) |
41 | 40 | oveq2d 7464 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · 𝐸))) |
42 | eqid 2740 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
43 | 8, 42, 21 | grpsubid 19064 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ( 1 · 𝐸) ∈ 𝐵) → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
44 | 13, 20, 43 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
45 | 27, 41, 44 | 3eqtrd 2784 | . . . 4 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (0g‘𝑅)) |
46 | 45, 38 | oveq12d 7466 | . . 3 ⊢ (𝜑 → (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 )) = ((0g‘𝑅) + 1 )) |
47 | 26, 46 | eqtrd 2780 | . 2 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = ((0g‘𝑅) + 1 )) |
48 | 8, 24, 42, 13, 11 | grplidd 19009 | . 2 ⊢ (𝜑 → ((0g‘𝑅) + 1 ) = 1 ) |
49 | 3, 47, 48 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 /s cqus 17565 Grpcgrp 18973 -gcsg 18975 ~QG cqg 19162 Rngcrng 20179 1rcur 20208 Ringcrg 20260 2Idealc2idl 21282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-eqg 19165 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-2idl 21283 |
This theorem is referenced by: rngqiprngfu 21350 |
Copyright terms: Public domain | W3C validator |