|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for rngqiprngfu 21327. (Contributed by AV, 16-Mar-2025.) | 
| Ref | Expression | 
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) | 
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | 
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) | 
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) | 
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) | 
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) | 
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) | 
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) | 
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) | 
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) | 
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | 
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) | 
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) | 
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | 
| Ref | Expression | 
|---|---|
| rngqiprngfulem5 | ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . 4 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7442 | . . 3 ⊢ ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) | 
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 ))) | 
| 4 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 6 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 7 | rngqiprngfu.u | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | rngqiprng1elbas 21296 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) | 
| 12 | rnggrp 20155 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 14 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 15 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 16 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 17 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 18 | 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17 | rngqiprngfulem2 21322 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | 
| 19 | 8, 9 | rngcl 20161 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) | 
| 20 | 4, 11, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) | 
| 21 | rngqiprngfu.m | . . . . . 6 ⊢ − = (-g‘𝑅) | |
| 22 | 8, 21 | grpsubcl 19038 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) | 
| 23 | 13, 18, 20, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) | 
| 24 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 25 | 8, 24, 9 | rngdi 20157 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ (𝐸 − ( 1 · 𝐸)) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) | 
| 26 | 4, 11, 23, 11, 25 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) | 
| 27 | 8, 9, 21, 4, 11, 18, 20 | rngsubdi 20168 | . . . . 5 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸)))) | 
| 28 | 8, 9 | rngass 20156 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) | 
| 29 | 4, 11, 11, 18, 28 | syl13anc 1374 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) | 
| 30 | 6, 9 | ressmulr 17351 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) | 
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → · = (.r‘𝐽)) | 
| 32 | 31 | oveqd 7448 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 · 1 ) = ( 1 (.r‘𝐽) 1 )) | 
| 33 | eqid 2737 | . . . . . . . . . . 11 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 34 | 33, 10 | ringidcl 20262 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) | 
| 35 | eqid 2737 | . . . . . . . . . . 11 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 36 | 33, 35, 10 | ringlidm 20266 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r‘𝐽) 1 ) = 1 ) | 
| 37 | 7, 34, 36 | syl2anc2 585 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 (.r‘𝐽) 1 ) = 1 ) | 
| 38 | 32, 37 | eqtrd 2777 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 1 ) = 1 ) | 
| 39 | 38 | oveq1d 7446 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · 𝐸)) | 
| 40 | 29, 39 | eqtr3d 2779 | . . . . . 6 ⊢ (𝜑 → ( 1 · ( 1 · 𝐸)) = ( 1 · 𝐸)) | 
| 41 | 40 | oveq2d 7447 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · 𝐸))) | 
| 42 | eqid 2737 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 43 | 8, 42, 21 | grpsubid 19042 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ( 1 · 𝐸) ∈ 𝐵) → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) | 
| 44 | 13, 20, 43 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) | 
| 45 | 27, 41, 44 | 3eqtrd 2781 | . . . 4 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (0g‘𝑅)) | 
| 46 | 45, 38 | oveq12d 7449 | . . 3 ⊢ (𝜑 → (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 )) = ((0g‘𝑅) + 1 )) | 
| 47 | 26, 46 | eqtrd 2777 | . 2 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = ((0g‘𝑅) + 1 )) | 
| 48 | 8, 24, 42, 13, 11 | grplidd 18987 | . 2 ⊢ (𝜑 → ((0g‘𝑅) + 1 ) = 1 ) | 
| 49 | 3, 47, 48 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 .rcmulr 17298 0gc0g 17484 /s cqus 17550 Grpcgrp 18951 -gcsg 18953 ~QG cqg 19140 Rngcrng 20149 1rcur 20178 Ringcrg 20230 2Idealc2idl 21259 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-ec 8747 df-qs 8751 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-0g 17486 df-imas 17553 df-qus 17554 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-eqg 19143 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-lss 20930 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-2idl 21260 | 
| This theorem is referenced by: rngqiprngfu 21327 | 
| Copyright terms: Public domain | W3C validator |