| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for rngqiprngfu 21278. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem5 | ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . 4 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 6 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 7 | rngqiprngfu.u | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | rngqiprng1elbas 21247 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 12 | rnggrp 20118 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 14 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 15 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 16 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 17 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 18 | 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17 | rngqiprngfulem2 21273 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 19 | 8, 9 | rngcl 20124 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 20 | 4, 11, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 21 | rngqiprngfu.m | . . . . . 6 ⊢ − = (-g‘𝑅) | |
| 22 | 8, 21 | grpsubcl 19003 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 23 | 13, 18, 20, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 24 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 25 | 8, 24, 9 | rngdi 20120 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ (𝐸 − ( 1 · 𝐸)) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
| 26 | 4, 11, 23, 11, 25 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
| 27 | 8, 9, 21, 4, 11, 18, 20 | rngsubdi 20131 | . . . . 5 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸)))) |
| 28 | 8, 9 | rngass 20119 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
| 29 | 4, 11, 11, 18, 28 | syl13anc 1374 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
| 30 | 6, 9 | ressmulr 17321 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → · = (.r‘𝐽)) |
| 32 | 31 | oveqd 7422 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 · 1 ) = ( 1 (.r‘𝐽) 1 )) |
| 33 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 34 | 33, 10 | ringidcl 20225 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 35 | eqid 2735 | . . . . . . . . . . 11 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 36 | 33, 35, 10 | ringlidm 20229 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r‘𝐽) 1 ) = 1 ) |
| 37 | 7, 34, 36 | syl2anc2 585 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 (.r‘𝐽) 1 ) = 1 ) |
| 38 | 32, 37 | eqtrd 2770 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 1 ) = 1 ) |
| 39 | 38 | oveq1d 7420 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · 𝐸)) |
| 40 | 29, 39 | eqtr3d 2772 | . . . . . 6 ⊢ (𝜑 → ( 1 · ( 1 · 𝐸)) = ( 1 · 𝐸)) |
| 41 | 40 | oveq2d 7421 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · 𝐸))) |
| 42 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 43 | 8, 42, 21 | grpsubid 19007 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ( 1 · 𝐸) ∈ 𝐵) → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
| 44 | 13, 20, 43 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
| 45 | 27, 41, 44 | 3eqtrd 2774 | . . . 4 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (0g‘𝑅)) |
| 46 | 45, 38 | oveq12d 7423 | . . 3 ⊢ (𝜑 → (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 )) = ((0g‘𝑅) + 1 )) |
| 47 | 26, 46 | eqtrd 2770 | . 2 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = ((0g‘𝑅) + 1 )) |
| 48 | 8, 24, 42, 13, 11 | grplidd 18952 | . 2 ⊢ (𝜑 → ((0g‘𝑅) + 1 ) = 1 ) |
| 49 | 3, 47, 48 | 3eqtrd 2774 | 1 ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 .rcmulr 17272 0gc0g 17453 /s cqus 17519 Grpcgrp 18916 -gcsg 18918 ~QG cqg 19105 Rngcrng 20112 1rcur 20141 Ringcrg 20193 2Idealc2idl 21210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-eqg 19108 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-lss 20889 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-2idl 21211 |
| This theorem is referenced by: rngqiprngfu 21278 |
| Copyright terms: Public domain | W3C validator |