| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem5 | Structured version Visualization version GIF version | ||
| Description: Lemma 5 for rngqiprngfu 21227. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem5 | ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . 4 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7398 | . . 3 ⊢ ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( 1 · 𝑈) = ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 6 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 7 | rngqiprngfu.u | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | rngqiprng1elbas 21196 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 12 | rnggrp 20067 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 13 | 4, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 14 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 15 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 16 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 17 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 18 | 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17 | rngqiprngfulem2 21222 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 19 | 8, 9 | rngcl 20073 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 20 | 4, 11, 18, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 21 | rngqiprngfu.m | . . . . . 6 ⊢ − = (-g‘𝑅) | |
| 22 | 8, 21 | grpsubcl 18952 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 23 | 13, 18, 20, 22 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 24 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 25 | 8, 24, 9 | rngdi 20069 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ (𝐸 − ( 1 · 𝐸)) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
| 26 | 4, 11, 23, 11, 25 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 ))) |
| 27 | 8, 9, 21, 4, 11, 18, 20 | rngsubdi 20080 | . . . . 5 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸)))) |
| 28 | 8, 9 | rngass 20068 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ ( 1 ∈ 𝐵 ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
| 29 | 4, 11, 11, 18, 28 | syl13anc 1374 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · ( 1 · 𝐸))) |
| 30 | 6, 9 | ressmulr 17270 | . . . . . . . . . . 11 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → · = (.r‘𝐽)) |
| 31 | 5, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → · = (.r‘𝐽)) |
| 32 | 31 | oveqd 7404 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 · 1 ) = ( 1 (.r‘𝐽) 1 )) |
| 33 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 34 | 33, 10 | ringidcl 20174 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 35 | eqid 2729 | . . . . . . . . . . 11 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 36 | 33, 35, 10 | ringlidm 20178 | . . . . . . . . . 10 ⊢ ((𝐽 ∈ Ring ∧ 1 ∈ (Base‘𝐽)) → ( 1 (.r‘𝐽) 1 ) = 1 ) |
| 37 | 7, 34, 36 | syl2anc2 585 | . . . . . . . . 9 ⊢ (𝜑 → ( 1 (.r‘𝐽) 1 ) = 1 ) |
| 38 | 32, 37 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝜑 → ( 1 · 1 ) = 1 ) |
| 39 | 38 | oveq1d 7402 | . . . . . . 7 ⊢ (𝜑 → (( 1 · 1 ) · 𝐸) = ( 1 · 𝐸)) |
| 40 | 29, 39 | eqtr3d 2766 | . . . . . 6 ⊢ (𝜑 → ( 1 · ( 1 · 𝐸)) = ( 1 · 𝐸)) |
| 41 | 40 | oveq2d 7403 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · ( 1 · 𝐸))) = (( 1 · 𝐸) − ( 1 · 𝐸))) |
| 42 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 43 | 8, 42, 21 | grpsubid 18956 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ( 1 · 𝐸) ∈ 𝐵) → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
| 44 | 13, 20, 43 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − ( 1 · 𝐸)) = (0g‘𝑅)) |
| 45 | 27, 41, 44 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → ( 1 · (𝐸 − ( 1 · 𝐸))) = (0g‘𝑅)) |
| 46 | 45, 38 | oveq12d 7405 | . . 3 ⊢ (𝜑 → (( 1 · (𝐸 − ( 1 · 𝐸))) + ( 1 · 1 )) = ((0g‘𝑅) + 1 )) |
| 47 | 26, 46 | eqtrd 2764 | . 2 ⊢ (𝜑 → ( 1 · ((𝐸 − ( 1 · 𝐸)) + 1 )) = ((0g‘𝑅) + 1 )) |
| 48 | 8, 24, 42, 13, 11 | grplidd 18901 | . 2 ⊢ (𝜑 → ((0g‘𝑅) + 1 ) = 1 ) |
| 49 | 3, 47, 48 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ( 1 · 𝑈) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 .rcmulr 17221 0gc0g 17402 /s cqus 17468 Grpcgrp 18865 -gcsg 18867 ~QG cqg 19054 Rngcrng 20061 1rcur 20090 Ringcrg 20142 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-2idl 21160 |
| This theorem is referenced by: rngqiprngfu 21227 |
| Copyright terms: Public domain | W3C validator |