| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrphom | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
| Ref | Expression |
|---|---|
| rnggrphom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rnggrphom.2 | ⊢ 𝐽 = (1st ‘𝑆) |
| Ref | Expression |
|---|---|
| rngogrphom | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrphom.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | rnggrphom.2 | . . 3 ⊢ 𝐽 = (1st ‘𝑆) | |
| 4 | eqid 2731 | . . 3 ⊢ ran 𝐽 = ran 𝐽 | |
| 5 | 1, 2, 3, 4 | rngohomf 38005 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽) |
| 6 | 1, 2, 3 | rngohomadd 38008 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 7 | 6 | eqcomd 2737 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 8 | 7 | ralrimivva 3175 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 9 | 1 | rngogrpo 37949 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 10 | 3 | rngogrpo 37949 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
| 11 | 2, 4 | elghomOLD 37926 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 14 | 5, 8, 13 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 GrpOpcgr 30469 GrpOpHom cghomOLD 37922 RingOpscrngo 37933 RingOpsHom crngohom 37999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ablo 30525 df-ghomOLD 37923 df-rngo 37934 df-rngohom 38002 |
| This theorem is referenced by: rngohom0 38011 rngohomsub 38012 rngokerinj 38014 |
| Copyright terms: Public domain | W3C validator |