Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrphom Structured version   Visualization version   GIF version

Theorem rngogrphom 36839
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.)
Hypotheses
Ref Expression
rnggrphom.1 𝐺 = (1st β€˜π‘…)
rnggrphom.2 𝐽 = (1st β€˜π‘†)
Assertion
Ref Expression
rngogrphom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))

Proof of Theorem rngogrphom
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnggrphom.1 . . 3 𝐺 = (1st β€˜π‘…)
2 eqid 2733 . . 3 ran 𝐺 = ran 𝐺
3 rnggrphom.2 . . 3 𝐽 = (1st β€˜π‘†)
4 eqid 2733 . . 3 ran 𝐽 = ran 𝐽
51, 2, 3, 4rngohomf 36834 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ 𝐹:ran 𝐺⟢ran 𝐽)
61, 2, 3rngohomadd 36837 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) β†’ (πΉβ€˜(π‘₯𝐺𝑦)) = ((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)))
76eqcomd 2739 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (π‘₯ ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) β†’ ((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))
87ralrimivva 3201 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))
91rngogrpo 36778 . . . 4 (𝑅 ∈ RingOps β†’ 𝐺 ∈ GrpOp)
103rngogrpo 36778 . . . 4 (𝑆 ∈ RingOps β†’ 𝐽 ∈ GrpOp)
112, 4elghomOLD 36755 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) β†’ (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟢ran 𝐽 ∧ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))))
129, 10, 11syl2an 597 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟢ran 𝐽 ∧ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))))
13123adant3 1133 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟢ran 𝐽 ∧ βˆ€π‘₯ ∈ ran πΊβˆ€π‘¦ ∈ ran 𝐺((πΉβ€˜π‘₯)𝐽(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))))
145, 8, 13mpbir2and 712 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  GrpOpcgr 29742   GrpOpHom cghomOLD 36751  RingOpscrngo 36762   RngHom crnghom 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-ablo 29798  df-ghomOLD 36752  df-rngo 36763  df-rngohom 36831
This theorem is referenced by:  rngohom0  36840  rngohomsub  36841  rngokerinj  36843
  Copyright terms: Public domain W3C validator