![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrphom | Structured version Visualization version GIF version |
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
Ref | Expression |
---|---|
rnggrphom.1 | β’ πΊ = (1st βπ ) |
rnggrphom.2 | β’ π½ = (1st βπ) |
Ref | Expression |
---|---|
rngogrphom | β’ ((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β πΉ β (πΊ GrpOpHom π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrphom.1 | . . 3 β’ πΊ = (1st βπ ) | |
2 | eqid 2733 | . . 3 β’ ran πΊ = ran πΊ | |
3 | rnggrphom.2 | . . 3 β’ π½ = (1st βπ) | |
4 | eqid 2733 | . . 3 β’ ran π½ = ran π½ | |
5 | 1, 2, 3, 4 | rngohomf 36834 | . 2 β’ ((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β πΉ:ran πΊβΆran π½) |
6 | 1, 2, 3 | rngohomadd 36837 | . . . 4 β’ (((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β§ (π₯ β ran πΊ β§ π¦ β ran πΊ)) β (πΉβ(π₯πΊπ¦)) = ((πΉβπ₯)π½(πΉβπ¦))) |
7 | 6 | eqcomd 2739 | . . 3 β’ (((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β§ (π₯ β ran πΊ β§ π¦ β ran πΊ)) β ((πΉβπ₯)π½(πΉβπ¦)) = (πΉβ(π₯πΊπ¦))) |
8 | 7 | ralrimivva 3201 | . 2 β’ ((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β βπ₯ β ran πΊβπ¦ β ran πΊ((πΉβπ₯)π½(πΉβπ¦)) = (πΉβ(π₯πΊπ¦))) |
9 | 1 | rngogrpo 36778 | . . . 4 β’ (π β RingOps β πΊ β GrpOp) |
10 | 3 | rngogrpo 36778 | . . . 4 β’ (π β RingOps β π½ β GrpOp) |
11 | 2, 4 | elghomOLD 36755 | . . . 4 β’ ((πΊ β GrpOp β§ π½ β GrpOp) β (πΉ β (πΊ GrpOpHom π½) β (πΉ:ran πΊβΆran π½ β§ βπ₯ β ran πΊβπ¦ β ran πΊ((πΉβπ₯)π½(πΉβπ¦)) = (πΉβ(π₯πΊπ¦))))) |
12 | 9, 10, 11 | syl2an 597 | . . 3 β’ ((π β RingOps β§ π β RingOps) β (πΉ β (πΊ GrpOpHom π½) β (πΉ:ran πΊβΆran π½ β§ βπ₯ β ran πΊβπ¦ β ran πΊ((πΉβπ₯)π½(πΉβπ¦)) = (πΉβ(π₯πΊπ¦))))) |
13 | 12 | 3adant3 1133 | . 2 β’ ((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β (πΉ β (πΊ GrpOpHom π½) β (πΉ:ran πΊβΆran π½ β§ βπ₯ β ran πΊβπ¦ β ran πΊ((πΉβπ₯)π½(πΉβπ¦)) = (πΉβ(π₯πΊπ¦))))) |
14 | 5, 8, 13 | mpbir2and 712 | 1 β’ ((π β RingOps β§ π β RingOps β§ πΉ β (π RngHom π)) β πΉ β (πΊ GrpOpHom π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7409 1st c1st 7973 GrpOpcgr 29742 GrpOpHom cghomOLD 36751 RingOpscrngo 36762 RngHom crnghom 36828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 df-ablo 29798 df-ghomOLD 36752 df-rngo 36763 df-rngohom 36831 |
This theorem is referenced by: rngohom0 36840 rngohomsub 36841 rngokerinj 36843 |
Copyright terms: Public domain | W3C validator |