|   | Mathbox for Jeff Madsen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrphom | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) | 
| Ref | Expression | 
|---|---|
| rnggrphom.1 | ⊢ 𝐺 = (1st ‘𝑅) | 
| rnggrphom.2 | ⊢ 𝐽 = (1st ‘𝑆) | 
| Ref | Expression | 
|---|---|
| rngogrphom | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rnggrphom.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | rnggrphom.2 | . . 3 ⊢ 𝐽 = (1st ‘𝑆) | |
| 4 | eqid 2737 | . . 3 ⊢ ran 𝐽 = ran 𝐽 | |
| 5 | 1, 2, 3, 4 | rngohomf 37973 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽) | 
| 6 | 1, 2, 3 | rngohomadd 37976 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) | 
| 7 | 6 | eqcomd 2743 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) | 
| 8 | 7 | ralrimivva 3202 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) | 
| 9 | 1 | rngogrpo 37917 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) | 
| 10 | 3 | rngogrpo 37917 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) | 
| 11 | 2, 4 | elghomOLD 37894 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | 
| 12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | 
| 13 | 12 | 3adant3 1133 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | 
| 14 | 5, 8, 13 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ran crn 5686 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 GrpOpcgr 30508 GrpOpHom cghomOLD 37890 RingOpscrngo 37901 RingOpsHom crngohom 37967 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-ablo 30564 df-ghomOLD 37891 df-rngo 37902 df-rngohom 37970 | 
| This theorem is referenced by: rngohom0 37979 rngohomsub 37980 rngokerinj 37982 | 
| Copyright terms: Public domain | W3C validator |