| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrphom | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
| Ref | Expression |
|---|---|
| rnggrphom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rnggrphom.2 | ⊢ 𝐽 = (1st ‘𝑆) |
| Ref | Expression |
|---|---|
| rngogrphom | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrphom.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | rnggrphom.2 | . . 3 ⊢ 𝐽 = (1st ‘𝑆) | |
| 4 | eqid 2730 | . . 3 ⊢ ran 𝐽 = ran 𝐽 | |
| 5 | 1, 2, 3, 4 | rngohomf 37967 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽) |
| 6 | 1, 2, 3 | rngohomadd 37970 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 7 | 6 | eqcomd 2736 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 8 | 7 | ralrimivva 3181 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 9 | 1 | rngogrpo 37911 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
| 10 | 3 | rngogrpo 37911 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
| 11 | 2, 4 | elghomOLD 37888 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 13 | 12 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 14 | 5, 8, 13 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 GrpOpcgr 30425 GrpOpHom cghomOLD 37884 RingOpscrngo 37895 RingOpsHom crngohom 37961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ablo 30481 df-ghomOLD 37885 df-rngo 37896 df-rngohom 37964 |
| This theorem is referenced by: rngohom0 37973 rngohomsub 37974 rngokerinj 37976 |
| Copyright terms: Public domain | W3C validator |