Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrphom Structured version   Visualization version   GIF version

Theorem rngogrphom 36129
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.)
Hypotheses
Ref Expression
rnggrphom.1 𝐺 = (1st𝑅)
rnggrphom.2 𝐽 = (1st𝑆)
Assertion
Ref Expression
rngogrphom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))

Proof of Theorem rngogrphom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnggrphom.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2738 . . 3 ran 𝐺 = ran 𝐺
3 rnggrphom.2 . . 3 𝐽 = (1st𝑆)
4 eqid 2738 . . 3 ran 𝐽 = ran 𝐽
51, 2, 3, 4rngohomf 36124 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽)
61, 2, 3rngohomadd 36127 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
76eqcomd 2744 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
87ralrimivva 3123 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
91rngogrpo 36068 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
103rngogrpo 36068 . . . 4 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
112, 4elghomOLD 36045 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
129, 10, 11syl2an 596 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
13123adant3 1131 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
145, 8, 13mpbir2and 710 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  GrpOpcgr 28851   GrpOpHom cghomOLD 36041  RingOpscrngo 36052   RngHom crnghom 36118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ablo 28907  df-ghomOLD 36042  df-rngo 36053  df-rngohom 36121
This theorem is referenced by:  rngohom0  36130  rngohomsub  36131  rngokerinj  36133
  Copyright terms: Public domain W3C validator