Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngogrphom | Structured version Visualization version GIF version |
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.) |
Ref | Expression |
---|---|
rnggrphom.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rnggrphom.2 | ⊢ 𝐽 = (1st ‘𝑆) |
Ref | Expression |
---|---|
rngogrphom | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrphom.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ ran 𝐺 = ran 𝐺 | |
3 | rnggrphom.2 | . . 3 ⊢ 𝐽 = (1st ‘𝑆) | |
4 | eqid 2738 | . . 3 ⊢ ran 𝐽 = ran 𝐽 | |
5 | 1, 2, 3, 4 | rngohomf 36124 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽) |
6 | 1, 2, 3 | rngohomadd 36127 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
7 | 6 | eqcomd 2744 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
8 | 7 | ralrimivva 3123 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
9 | 1 | rngogrpo 36068 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
10 | 3 | rngogrpo 36068 | . . . 4 ⊢ (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp) |
11 | 2, 4 | elghomOLD 36045 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
12 | 9, 10, 11 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
13 | 12 | 3adant3 1131 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
14 | 5, 8, 13 | mpbir2and 710 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 GrpOpcgr 28851 GrpOpHom cghomOLD 36041 RingOpscrngo 36052 RngHom crnghom 36118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-ablo 28907 df-ghomOLD 36042 df-rngo 36053 df-rngohom 36121 |
This theorem is referenced by: rngohom0 36130 rngohomsub 36131 rngokerinj 36133 |
Copyright terms: Public domain | W3C validator |