Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngogrphom Structured version   Visualization version   GIF version

Theorem rngogrphom 37965
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011.)
Hypotheses
Ref Expression
rnggrphom.1 𝐺 = (1st𝑅)
rnggrphom.2 𝐽 = (1st𝑆)
Assertion
Ref Expression
rngogrphom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))

Proof of Theorem rngogrphom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnggrphom.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2729 . . 3 ran 𝐺 = ran 𝐺
3 rnggrphom.2 . . 3 𝐽 = (1st𝑆)
4 eqid 2729 . . 3 ran 𝐽 = ran 𝐽
51, 2, 3, 4rngohomf 37960 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹:ran 𝐺⟶ran 𝐽)
61, 2, 3rngohomadd 37963 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
76eqcomd 2735 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) ∧ (𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺)) → ((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
87ralrimivva 3180 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
91rngogrpo 37904 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
103rngogrpo 37904 . . . 4 (𝑆 ∈ RingOps → 𝐽 ∈ GrpOp)
112, 4elghomOLD 37881 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
129, 10, 11syl2an 596 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
13123adant3 1132 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹 ∈ (𝐺 GrpOpHom 𝐽) ↔ (𝐹:ran 𝐺⟶ran 𝐽 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐽(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
145, 8, 13mpbir2and 713 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → 𝐹 ∈ (𝐺 GrpOpHom 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  GrpOpcgr 30418   GrpOpHom cghomOLD 37877  RingOpscrngo 37888   RingOpsHom crngohom 37954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ablo 30474  df-ghomOLD 37878  df-rngo 37889  df-rngohom 37957
This theorem is referenced by:  rngohom0  37966  rngohomsub  37967  rngokerinj  37969
  Copyright terms: Public domain W3C validator