Step | Hyp | Ref
| Expression |
1 | | rnghomval.1 |
. . . 4
⊢ 𝐺 = (1st ‘𝑅) |
2 | | rnghomval.2 |
. . . 4
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | rnghomval.3 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
4 | | rnghomval.4 |
. . . 4
⊢ 𝑈 = (GId‘𝐻) |
5 | | rnghomval.5 |
. . . 4
⊢ 𝐽 = (1st ‘𝑆) |
6 | | rnghomval.6 |
. . . 4
⊢ 𝐾 = (2nd ‘𝑆) |
7 | | rnghomval.7 |
. . . 4
⊢ 𝑌 = ran 𝐽 |
8 | | rnghomval.8 |
. . . 4
⊢ 𝑉 = (GId‘𝐾) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | rngohomval 36049 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))}) |
10 | 9 | eleq2d 2824 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))})) |
11 | 5 | fvexi 6770 |
. . . . . . 7
⊢ 𝐽 ∈ V |
12 | 11 | rnex 7733 |
. . . . . 6
⊢ ran 𝐽 ∈ V |
13 | 7, 12 | eqeltri 2835 |
. . . . 5
⊢ 𝑌 ∈ V |
14 | 1 | fvexi 6770 |
. . . . . . 7
⊢ 𝐺 ∈ V |
15 | 14 | rnex 7733 |
. . . . . 6
⊢ ran 𝐺 ∈ V |
16 | 3, 15 | eqeltri 2835 |
. . . . 5
⊢ 𝑋 ∈ V |
17 | 13, 16 | elmap 8617 |
. . . 4
⊢ (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌) |
18 | 17 | anbi1i 623 |
. . 3
⊢ ((𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) ↔ (𝐹:𝑋⟶𝑌 ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
19 | | fveq1 6755 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑈) = (𝐹‘𝑈)) |
20 | 19 | eqeq1d 2740 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑈) = 𝑉 ↔ (𝐹‘𝑈) = 𝑉)) |
21 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
22 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
23 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
24 | 22, 23 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
25 | 21, 24 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ↔ (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
26 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥𝐻𝑦)) = (𝐹‘(𝑥𝐻𝑦))) |
27 | 22, 23 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐾(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))) |
28 | 26, 27 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦)) ↔ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))) |
29 | 25, 28 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))) ↔ ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
30 | 29 | 2ralbidv 3122 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
31 | 20, 30 | anbi12d 630 |
. . . 4
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦)))) ↔ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
32 | 31 | elrab 3617 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))} ↔ (𝐹 ∈ (𝑌 ↑m 𝑋) ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
33 | | 3anass 1093 |
. . 3
⊢ ((𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))) ↔ (𝐹:𝑋⟶𝑌 ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
34 | 18, 32, 33 | 3bitr4i 302 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑m 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))} ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
35 | 10, 34 | bitrdi 286 |
1
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |