Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngohom Structured version   Visualization version   GIF version

Theorem isrngohom 37137
Description: The predicate "is a ring homomorphism from 𝑅 to 𝑆". (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomval.1 𝐺 = (1st𝑅)
rnghomval.2 𝐻 = (2nd𝑅)
rnghomval.3 𝑋 = ran 𝐺
rnghomval.4 𝑈 = (GId‘𝐻)
rnghomval.5 𝐽 = (1st𝑆)
rnghomval.6 𝐾 = (2nd𝑆)
rnghomval.7 𝑌 = ran 𝐽
rnghomval.8 𝑉 = (GId‘𝐾)
Assertion
Ref Expression
isrngohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝑌   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem isrngohom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghomval.1 . . . 4 𝐺 = (1st𝑅)
2 rnghomval.2 . . . 4 𝐻 = (2nd𝑅)
3 rnghomval.3 . . . 4 𝑋 = ran 𝐺
4 rnghomval.4 . . . 4 𝑈 = (GId‘𝐻)
5 rnghomval.5 . . . 4 𝐽 = (1st𝑆)
6 rnghomval.6 . . . 4 𝐾 = (2nd𝑆)
7 rnghomval.7 . . . 4 𝑌 = ran 𝐽
8 rnghomval.8 . . . 4 𝑉 = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8rngohomval 37136 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsHom 𝑆) = {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))})
109eleq2d 2818 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))}))
115fvexi 6905 . . . . . . 7 𝐽 ∈ V
1211rnex 7907 . . . . . 6 ran 𝐽 ∈ V
137, 12eqeltri 2828 . . . . 5 𝑌 ∈ V
141fvexi 6905 . . . . . . 7 𝐺 ∈ V
1514rnex 7907 . . . . . 6 ran 𝐺 ∈ V
163, 15eqeltri 2828 . . . . 5 𝑋 ∈ V
1713, 16elmap 8869 . . . 4 (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌)
1817anbi1i 623 . . 3 ((𝐹 ∈ (𝑌m 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
19 fveq1 6890 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑈) = (𝐹𝑈))
2019eqeq1d 2733 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑈) = 𝑉 ↔ (𝐹𝑈) = 𝑉))
21 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
22 fveq1 6890 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
23 fveq1 6890 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2422, 23oveq12d 7430 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
2521, 24eqeq12d 2747 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦))))
26 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐻𝑦)) = (𝐹‘(𝑥𝐻𝑦)))
2722, 23oveq12d 7430 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐾(𝑓𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
2826, 27eqeq12d 2747 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
2925, 28anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
30292ralbidv 3217 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3120, 30anbi12d 630 . . . 4 (𝑓 = 𝐹 → (((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)))) ↔ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3231elrab 3683 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
33 3anass 1094 . . 3 ((𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3418, 32, 333bitr4i 303 . 2 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3510, 34bitrdi 287 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  {crab 3431  Vcvv 3473  ran crn 5677  wf 6539  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  m cmap 8824  GIdcgi 30011  RingOpscrngo 37066   RingOpsHom crngohom 37132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8826  df-rngohom 37135
This theorem is referenced by:  rngohomf  37138  rngohom1  37140  rngohomadd  37141  rngohommul  37142  rngohomco  37146  rngoisocnv  37153
  Copyright terms: Public domain W3C validator