Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngohom Structured version   Visualization version   GIF version

Theorem isrngohom 35124
Description: The predicate "is a ring homomorphism from 𝑅 to 𝑆". (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomval.1 𝐺 = (1st𝑅)
rnghomval.2 𝐻 = (2nd𝑅)
rnghomval.3 𝑋 = ran 𝐺
rnghomval.4 𝑈 = (GId‘𝐻)
rnghomval.5 𝐽 = (1st𝑆)
rnghomval.6 𝐾 = (2nd𝑆)
rnghomval.7 𝑌 = ran 𝐽
rnghomval.8 𝑉 = (GId‘𝐾)
Assertion
Ref Expression
isrngohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝑌   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem isrngohom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghomval.1 . . . 4 𝐺 = (1st𝑅)
2 rnghomval.2 . . . 4 𝐻 = (2nd𝑅)
3 rnghomval.3 . . . 4 𝑋 = ran 𝐺
4 rnghomval.4 . . . 4 𝑈 = (GId‘𝐻)
5 rnghomval.5 . . . 4 𝐽 = (1st𝑆)
6 rnghomval.6 . . . 4 𝐾 = (2nd𝑆)
7 rnghomval.7 . . . 4 𝑌 = ran 𝐽
8 rnghomval.8 . . . 4 𝑉 = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8rngohomval 35123 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))})
109eleq2d 2895 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))}))
115fvexi 6677 . . . . . . 7 𝐽 ∈ V
1211rnex 7606 . . . . . 6 ran 𝐽 ∈ V
137, 12eqeltri 2906 . . . . 5 𝑌 ∈ V
141fvexi 6677 . . . . . . 7 𝐺 ∈ V
1514rnex 7606 . . . . . 6 ran 𝐺 ∈ V
163, 15eqeltri 2906 . . . . 5 𝑋 ∈ V
1713, 16elmap 8424 . . . 4 (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌)
1817anbi1i 623 . . 3 ((𝐹 ∈ (𝑌m 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
19 fveq1 6662 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑈) = (𝐹𝑈))
2019eqeq1d 2820 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑈) = 𝑉 ↔ (𝐹𝑈) = 𝑉))
21 fveq1 6662 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
22 fveq1 6662 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
23 fveq1 6662 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2422, 23oveq12d 7163 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
2521, 24eqeq12d 2834 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦))))
26 fveq1 6662 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐻𝑦)) = (𝐹‘(𝑥𝐻𝑦)))
2722, 23oveq12d 7163 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐾(𝑓𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
2826, 27eqeq12d 2834 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
2925, 28anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
30292ralbidv 3196 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3120, 30anbi12d 630 . . . 4 (𝑓 = 𝐹 → (((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)))) ↔ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3231elrab 3677 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹 ∈ (𝑌m 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
33 3anass 1087 . . 3 ((𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3418, 32, 333bitr4i 304 . 2 (𝐹 ∈ {𝑓 ∈ (𝑌m 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3510, 34syl6bb 288 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  m cmap 8395  GIdcgi 28194  RingOpscrngo 35053   RngHom crnghom 35119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397  df-rngohom 35122
This theorem is referenced by:  rngohomf  35125  rngohom1  35127  rngohomadd  35128  rngohommul  35129  rngohomco  35133  rngoisocnv  35140
  Copyright terms: Public domain W3C validator