| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngimfv | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngimfv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)) |
| 3 | eceq1 8661 | . . . 4 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 4 | oveq2 7354 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴)) | |
| 5 | 3, 4 | opeq12d 4830 | . . 3 ⊢ (𝑥 = 𝐴 → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 = 𝐴) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| 7 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 8 | opex 5402 | . . 3 ⊢ 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V | |
| 9 | 8 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V) |
| 10 | 2, 6, 7, 9 | fvmptd 6936 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 [cec 8620 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 /s cqus 17409 ×s cxps 17410 ~QG cqg 19035 Rngcrng 20070 1rcur 20099 Ringcrg 20151 2Idealc2idl 21186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-ec 8624 |
| This theorem is referenced by: rngqiprngghm 21236 rngqiprngimf1 21237 rngqiprngimfo 21238 rngqiprnglin 21239 rngqiprngfu 21254 |
| Copyright terms: Public domain | W3C validator |