Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 46773
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (πœ‘ β†’ 𝑅 ∈ Rng)
rng2idlring.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
rng2idlring.j 𝐽 = (𝑅 β†Ύs 𝐼)
rng2idlring.u (πœ‘ β†’ 𝐽 ∈ Ring)
rng2idlring.b 𝐡 = (Baseβ€˜π‘…)
rng2idlring.t Β· = (.rβ€˜π‘…)
rng2idlring.1 1 = (1rβ€˜π½)
rngqiprngim.g ∼ = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s ∼ )
rngqiprngim.c 𝐢 = (Baseβ€˜π‘„)
rngqiprngim.p 𝑃 = (𝑄 Γ—s 𝐽)
rngqiprngim.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
Assertion
Ref Expression
rngqiprngimfv ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ (πΉβ€˜π΄) = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
Distinct variable groups:   π‘₯,𝐢   π‘₯,𝐼   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐴   π‘₯, ∼   π‘₯, 1   π‘₯, Β·
Allowed substitution hints:   𝑃(π‘₯)   𝑄(π‘₯)   𝑅(π‘₯)   𝐹(π‘₯)   𝐽(π‘₯)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
21a1i 11 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩))
3 eceq1 8740 . . . 4 (π‘₯ = 𝐴 β†’ [π‘₯] ∼ = [𝐴] ∼ )
4 oveq2 7416 . . . 4 (π‘₯ = 𝐴 β†’ ( 1 Β· π‘₯) = ( 1 Β· 𝐴))
53, 4opeq12d 4881 . . 3 (π‘₯ = 𝐴 β†’ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
65adantl 482 . 2 (((πœ‘ ∧ 𝐴 ∈ 𝐡) ∧ π‘₯ = 𝐴) β†’ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
7 simpr 485 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ 𝐴 ∈ 𝐡)
8 opex 5464 . . 3 ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩ ∈ V
98a1i 11 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 7005 1 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ (πΉβ€˜π΄) = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4634   ↦ cmpt 5231  β€˜cfv 6543  (class class class)co 7408  [cec 8700  Basecbs 17143   β†Ύs cress 17172  .rcmulr 17197   /s cqus 17450   Γ—s cxps 17451   ~QG cqg 19001  1rcur 20003  Ringcrg 20055  2Idealc2idl 20855  Rngcrng 46638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-ec 8704
This theorem is referenced by:  rngqiprngghm  46774  rngqiprngimf1  46775  rngqiprngimfo  46776  rngqiprnglin  46777  rngqiprngfu  46792
  Copyright terms: Public domain W3C validator