| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngimfv | Structured version Visualization version GIF version | ||
| Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngimfv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)) |
| 3 | eceq1 8763 | . . . 4 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
| 4 | oveq2 7418 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴)) | |
| 5 | 3, 4 | opeq12d 4862 | . . 3 ⊢ (𝑥 = 𝐴 → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 = 𝐴) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| 7 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
| 8 | opex 5444 | . . 3 ⊢ 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V | |
| 9 | 8 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V) |
| 10 | 2, 6, 7, 9 | fvmptd 6998 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 [cec 8722 Basecbs 17233 ↾s cress 17256 .rcmulr 17277 /s cqus 17524 ×s cxps 17525 ~QG cqg 19110 Rngcrng 20117 1rcur 20146 Ringcrg 20198 2Idealc2idl 21215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-ec 8726 |
| This theorem is referenced by: rngqiprngghm 21265 rngqiprngimf1 21266 rngqiprngimfo 21267 rngqiprnglin 21268 rngqiprngfu 21283 |
| Copyright terms: Public domain | W3C validator |