![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngimfv | Structured version Visualization version GIF version |
Description: The value of the function πΉ at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
rngqiprngim.c | β’ πΆ = (Baseβπ) |
rngqiprngim.p | β’ π = (π Γs π½) |
rngqiprngim.f | β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
Ref | Expression |
---|---|
rngqiprngimfv | β’ ((π β§ π΄ β π΅) β (πΉβπ΄) = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngim.f | . . 3 β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
2 | 1 | a1i 11 | . 2 β’ ((π β§ π΄ β π΅) β πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)) |
3 | eceq1 8740 | . . . 4 β’ (π₯ = π΄ β [π₯] βΌ = [π΄] βΌ ) | |
4 | oveq2 7416 | . . . 4 β’ (π₯ = π΄ β ( 1 Β· π₯) = ( 1 Β· π΄)) | |
5 | 3, 4 | opeq12d 4881 | . . 3 β’ (π₯ = π΄ β β¨[π₯] βΌ , ( 1 Β· π₯)β© = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
6 | 5 | adantl 482 | . 2 β’ (((π β§ π΄ β π΅) β§ π₯ = π΄) β β¨[π₯] βΌ , ( 1 Β· π₯)β© = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
7 | simpr 485 | . 2 β’ ((π β§ π΄ β π΅) β π΄ β π΅) | |
8 | opex 5464 | . . 3 β’ β¨[π΄] βΌ , ( 1 Β· π΄)β© β V | |
9 | 8 | a1i 11 | . 2 β’ ((π β§ π΄ β π΅) β β¨[π΄] βΌ , ( 1 Β· π΄)β© β V) |
10 | 2, 6, 7, 9 | fvmptd 7005 | 1 β’ ((π β§ π΄ β π΅) β (πΉβπ΄) = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4634 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 [cec 8700 Basecbs 17143 βΎs cress 17172 .rcmulr 17197 /s cqus 17450 Γs cxps 17451 ~QG cqg 19001 1rcur 20003 Ringcrg 20055 2Idealc2idl 20855 Rngcrng 46638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-ec 8704 |
This theorem is referenced by: rngqiprngghm 46774 rngqiprngimf1 46775 rngqiprngimfo 46776 rngqiprnglin 46777 rngqiprngfu 46792 |
Copyright terms: Public domain | W3C validator |