MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 21331
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimfv ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,   𝑥, 1   𝑥, ·
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
21a1i 11 . 2 ((𝜑𝐴𝐵) → 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩))
3 eceq1 8802 . . . 4 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
4 oveq2 7456 . . . 4 (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴))
53, 4opeq12d 4905 . . 3 (𝑥 = 𝐴 → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
65adantl 481 . 2 (((𝜑𝐴𝐵) ∧ 𝑥 = 𝐴) → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
7 simpr 484 . 2 ((𝜑𝐴𝐵) → 𝐴𝐵)
8 opex 5484 . . 3 ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V
98a1i 11 . 2 ((𝜑𝐴𝐵) → ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 7036 1 ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  s cress 17287  .rcmulr 17312   /s cqus 17565   ×s cxps 17566   ~QG cqg 19162  Rngcrng 20179  1rcur 20208  Ringcrg 20260  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-ec 8765
This theorem is referenced by:  rngqiprngghm  21332  rngqiprngimf1  21333  rngqiprngimfo  21334  rngqiprnglin  21335  rngqiprngfu  21350
  Copyright terms: Public domain W3C validator