MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 21061
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimfv ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,   𝑥, 1   𝑥, ·
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
21a1i 11 . 2 ((𝜑𝐴𝐵) → 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩))
3 eceq1 8747 . . . 4 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
4 oveq2 7420 . . . 4 (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴))
53, 4opeq12d 4881 . . 3 (𝑥 = 𝐴 → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
65adantl 481 . 2 (((𝜑𝐴𝐵) ∧ 𝑥 = 𝐴) → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
7 simpr 484 . 2 ((𝜑𝐴𝐵) → 𝐴𝐵)
8 opex 5464 . . 3 ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V
98a1i 11 . 2 ((𝜑𝐴𝐵) → ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 7005 1 ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634  cmpt 5231  cfv 6543  (class class class)co 7412  [cec 8707  Basecbs 17151  s cress 17180  .rcmulr 17205   /s cqus 17458   ×s cxps 17459   ~QG cqg 19042  Rngcrng 20050  1rcur 20079  Ringcrg 20131  2Idealc2idl 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-ec 8711
This theorem is referenced by:  rngqiprngghm  21062  rngqiprngimf1  21063  rngqiprngimfo  21064  rngqiprnglin  21065  rngqiprngfu  21080
  Copyright terms: Public domain W3C validator