MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 21170
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (πœ‘ β†’ 𝑅 ∈ Rng)
rng2idlring.i (πœ‘ β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
rng2idlring.j 𝐽 = (𝑅 β†Ύs 𝐼)
rng2idlring.u (πœ‘ β†’ 𝐽 ∈ Ring)
rng2idlring.b 𝐡 = (Baseβ€˜π‘…)
rng2idlring.t Β· = (.rβ€˜π‘…)
rng2idlring.1 1 = (1rβ€˜π½)
rngqiprngim.g ∼ = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s ∼ )
rngqiprngim.c 𝐢 = (Baseβ€˜π‘„)
rngqiprngim.p 𝑃 = (𝑄 Γ—s 𝐽)
rngqiprngim.f 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
Assertion
Ref Expression
rngqiprngimfv ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ (πΉβ€˜π΄) = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
Distinct variable groups:   π‘₯,𝐢   π‘₯,𝐼   π‘₯,𝐡   πœ‘,π‘₯   π‘₯,𝐴   π‘₯, ∼   π‘₯, 1   π‘₯, Β·
Allowed substitution hints:   𝑃(π‘₯)   𝑄(π‘₯)   𝑅(π‘₯)   𝐹(π‘₯)   𝐽(π‘₯)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩)
21a1i 11 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩))
3 eceq1 8754 . . . 4 (π‘₯ = 𝐴 β†’ [π‘₯] ∼ = [𝐴] ∼ )
4 oveq2 7422 . . . 4 (π‘₯ = 𝐴 β†’ ( 1 Β· π‘₯) = ( 1 Β· 𝐴))
53, 4opeq12d 4877 . . 3 (π‘₯ = 𝐴 β†’ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
65adantl 481 . 2 (((πœ‘ ∧ 𝐴 ∈ 𝐡) ∧ π‘₯ = 𝐴) β†’ ⟨[π‘₯] ∼ , ( 1 Β· π‘₯)⟩ = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
7 simpr 484 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ 𝐴 ∈ 𝐡)
8 opex 5460 . . 3 ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩ ∈ V
98a1i 11 . 2 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 7006 1 ((πœ‘ ∧ 𝐴 ∈ 𝐡) β†’ (πΉβ€˜π΄) = ⟨[𝐴] ∼ , ( 1 Β· 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  Vcvv 3469  βŸ¨cop 4630   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  [cec 8714  Basecbs 17165   β†Ύs cress 17194  .rcmulr 17219   /s cqus 17472   Γ—s cxps 17473   ~QG cqg 19061  Rngcrng 20076  1rcur 20105  Ringcrg 20157  2Idealc2idl 21125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-ec 8718
This theorem is referenced by:  rngqiprngghm  21171  rngqiprngimf1  21172  rngqiprngimfo  21173  rngqiprnglin  21174  rngqiprngfu  21189
  Copyright terms: Public domain W3C validator