![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngimfv | Structured version Visualization version GIF version |
Description: The value of the function πΉ at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
rngqiprngim.c | β’ πΆ = (Baseβπ) |
rngqiprngim.p | β’ π = (π Γs π½) |
rngqiprngim.f | β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
Ref | Expression |
---|---|
rngqiprngimfv | β’ ((π β§ π΄ β π΅) β (πΉβπ΄) = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngim.f | . . 3 β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
2 | 1 | a1i 11 | . 2 β’ ((π β§ π΄ β π΅) β πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)) |
3 | eceq1 8754 | . . . 4 β’ (π₯ = π΄ β [π₯] βΌ = [π΄] βΌ ) | |
4 | oveq2 7422 | . . . 4 β’ (π₯ = π΄ β ( 1 Β· π₯) = ( 1 Β· π΄)) | |
5 | 3, 4 | opeq12d 4877 | . . 3 β’ (π₯ = π΄ β β¨[π₯] βΌ , ( 1 Β· π₯)β© = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
6 | 5 | adantl 481 | . 2 β’ (((π β§ π΄ β π΅) β§ π₯ = π΄) β β¨[π₯] βΌ , ( 1 Β· π₯)β© = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
7 | simpr 484 | . 2 β’ ((π β§ π΄ β π΅) β π΄ β π΅) | |
8 | opex 5460 | . . 3 β’ β¨[π΄] βΌ , ( 1 Β· π΄)β© β V | |
9 | 8 | a1i 11 | . 2 β’ ((π β§ π΄ β π΅) β β¨[π΄] βΌ , ( 1 Β· π΄)β© β V) |
10 | 2, 6, 7, 9 | fvmptd 7006 | 1 β’ ((π β§ π΄ β π΅) β (πΉβπ΄) = β¨[π΄] βΌ , ( 1 Β· π΄)β©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 Vcvv 3469 β¨cop 4630 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 [cec 8714 Basecbs 17165 βΎs cress 17194 .rcmulr 17219 /s cqus 17472 Γs cxps 17473 ~QG cqg 19061 Rngcrng 20076 1rcur 20105 Ringcrg 20157 2Idealc2idl 21125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-ec 8718 |
This theorem is referenced by: rngqiprngghm 21171 rngqiprngimf1 21172 rngqiprngimfo 21173 rngqiprnglin 21174 rngqiprngfu 21189 |
Copyright terms: Public domain | W3C validator |