MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 21235
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimfv ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,   𝑥, 1   𝑥, ·
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
21a1i 11 . 2 ((𝜑𝐴𝐵) → 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩))
3 eceq1 8661 . . . 4 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
4 oveq2 7354 . . . 4 (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴))
53, 4opeq12d 4830 . . 3 (𝑥 = 𝐴 → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
65adantl 481 . 2 (((𝜑𝐴𝐵) ∧ 𝑥 = 𝐴) → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
7 simpr 484 . 2 ((𝜑𝐴𝐵) → 𝐴𝐵)
8 opex 5402 . . 3 ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V
98a1i 11 . 2 ((𝜑𝐴𝐵) → ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 6936 1 ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  s cress 17141  .rcmulr 17162   /s cqus 17409   ×s cxps 17410   ~QG cqg 19035  Rngcrng 20070  1rcur 20099  Ringcrg 20151  2Idealc2idl 21186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-ec 8624
This theorem is referenced by:  rngqiprngghm  21236  rngqiprngimf1  21237  rngqiprngimfo  21238  rngqiprnglin  21239  rngqiprngfu  21254
  Copyright terms: Public domain W3C validator