![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngimfv | Structured version Visualization version GIF version |
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
rng2idlring.t | ⊢ · = (.r‘𝑅) |
rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
Ref | Expression |
---|---|
rngqiprngimfv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngim.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)) |
3 | eceq1 8802 | . . . 4 ⊢ (𝑥 = 𝐴 → [𝑥] ∼ = [𝐴] ∼ ) | |
4 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴)) | |
5 | 3, 4 | opeq12d 4905 | . . 3 ⊢ (𝑥 = 𝐴 → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 = 𝐴) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
7 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
8 | opex 5484 | . . 3 ⊢ 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 〈[𝐴] ∼ , ( 1 · 𝐴)〉 ∈ V) |
10 | 2, 6, 7, 9 | fvmptd 7036 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → (𝐹‘𝐴) = 〈[𝐴] ∼ , ( 1 · 𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 [cec 8761 Basecbs 17258 ↾s cress 17287 .rcmulr 17312 /s cqus 17565 ×s cxps 17566 ~QG cqg 19162 Rngcrng 20179 1rcur 20208 Ringcrg 20260 2Idealc2idl 21282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-ec 8765 |
This theorem is referenced by: rngqiprngghm 21332 rngqiprngimf1 21333 rngqiprngimfo 21334 rngqiprnglin 21335 rngqiprngfu 21350 |
Copyright terms: Public domain | W3C validator |