MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimfv Structured version   Visualization version   GIF version

Theorem rngqiprngimfv 21264
Description: The value of the function 𝐹 at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimfv ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,   𝑥, 1   𝑥, ·
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝑅(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimfv
StepHypRef Expression
1 rngqiprngim.f . . 3 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
21a1i 11 . 2 ((𝜑𝐴𝐵) → 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩))
3 eceq1 8763 . . . 4 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
4 oveq2 7418 . . . 4 (𝑥 = 𝐴 → ( 1 · 𝑥) = ( 1 · 𝐴))
53, 4opeq12d 4862 . . 3 (𝑥 = 𝐴 → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
65adantl 481 . 2 (((𝜑𝐴𝐵) ∧ 𝑥 = 𝐴) → ⟨[𝑥] , ( 1 · 𝑥)⟩ = ⟨[𝐴] , ( 1 · 𝐴)⟩)
7 simpr 484 . 2 ((𝜑𝐴𝐵) → 𝐴𝐵)
8 opex 5444 . . 3 ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V
98a1i 11 . 2 ((𝜑𝐴𝐵) → ⟨[𝐴] , ( 1 · 𝐴)⟩ ∈ V)
102, 6, 7, 9fvmptd 6998 1 ((𝜑𝐴𝐵) → (𝐹𝐴) = ⟨[𝐴] , ( 1 · 𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  [cec 8722  Basecbs 17233  s cress 17256  .rcmulr 17277   /s cqus 17524   ×s cxps 17525   ~QG cqg 19110  Rngcrng 20117  1rcur 20146  Ringcrg 20198  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-ec 8726
This theorem is referenced by:  rngqiprngghm  21265  rngqiprngimf1  21266  rngqiprngimfo  21267  rngqiprnglin  21268  rngqiprngfu  21283
  Copyright terms: Public domain W3C validator