| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngimf | Structured version Visualization version GIF version | ||
| Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21200, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngimf | ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 2 | 1 | ovexi 7380 | . . . . . 6 ⊢ ∼ ∈ V |
| 3 | 2 | ecelqsi 8694 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 5 | rngqiprngim.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑄 = (𝑅 /s ∼ )) |
| 7 | rng2idlring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 9 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∼ ∈ V) |
| 10 | rng2idlring.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Rng) |
| 12 | 6, 8, 9, 11 | qusbas 17449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = (Base‘𝑄)) |
| 13 | rngqiprngim.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑄) | |
| 14 | 12, 13 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = 𝐶) |
| 15 | 4, 14 | eleqtrd 2833 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ 𝐶) |
| 16 | rng2idlring.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 17 | rng2idlring.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 18 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 19 | 16, 17, 18 | 2idlbas 21200 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 20 | 16, 17, 18 | 2idlelbas 21201 | . . . . . . 7 ⊢ (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅)))) |
| 21 | 20 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅))) |
| 22 | 19, 21 | eqeltrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘(oppr‘𝑅))) |
| 23 | rng2idlring.u | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 24 | ringrng 20203 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 26 | 17, 25 | eqeltrrid 2836 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 27 | 10, 16, 26 | rng2idl0 21204 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) |
| 28 | 10, 22, 27 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼)) |
| 29 | rng2idlring.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐽) | |
| 30 | 18, 29 | ringidcl 20183 | . . . . . . 7 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 31 | 23, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 32 | 31, 19 | eleqtrd 2833 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 33 | 32 | anim1ci 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) |
| 34 | eqid 2731 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 35 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 36 | eqid 2731 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 37 | 34, 7, 35, 36 | rngridlmcl 21154 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → ( 1 · 𝑥) ∈ 𝐼) |
| 38 | 28, 33, 37 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) ∈ 𝐼) |
| 39 | 15, 38 | opelxpd 5653 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 ∈ (𝐶 × 𝐼)) |
| 40 | rngqiprngim.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 41 | 39, 40 | fmptd 7047 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 [cec 8620 / cqs 8621 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 0gc0g 17343 /s cqus 17409 ×s cxps 17410 ~QG cqg 19035 Rngcrng 20070 1rcur 20099 Ringcrg 20151 opprcoppr 20254 LIdealclidl 21143 2Idealc2idl 21186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-qus 17413 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-subrng 20461 df-lss 20865 df-sra 21107 df-rgmod 21108 df-lidl 21145 df-2idl 21187 |
| This theorem is referenced by: rngqiprngghm 21236 rngqiprngimfo 21238 |
| Copyright terms: Public domain | W3C validator |