![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngimf | Structured version Visualization version GIF version |
Description: πΉ is a function from (the base set of) a non-unital ring to the product of the (base set πΆ of the) quotient with a two-sided ideal and the (base set πΌ of the) two-sided ideal (because of 2idlbas 20861, (Baseβπ½) = πΌ!) (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
rngqiprngim.c | β’ πΆ = (Baseβπ) |
rngqiprngim.p | β’ π = (π Γs π½) |
rngqiprngim.f | β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
Ref | Expression |
---|---|
rngqiprngimf | β’ (π β πΉ:π΅βΆ(πΆ Γ πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngim.g | . . . . . . 7 β’ βΌ = (π ~QG πΌ) | |
2 | 1 | ovexi 7439 | . . . . . 6 β’ βΌ β V |
3 | 2 | ecelqsi 8763 | . . . . 5 β’ (π₯ β π΅ β [π₯] βΌ β (π΅ / βΌ )) |
4 | 3 | adantl 482 | . . . 4 β’ ((π β§ π₯ β π΅) β [π₯] βΌ β (π΅ / βΌ )) |
5 | rngqiprngim.q | . . . . . . 7 β’ π = (π /s βΌ ) | |
6 | 5 | a1i 11 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π = (π /s βΌ )) |
7 | rng2idlring.b | . . . . . . 7 β’ π΅ = (Baseβπ ) | |
8 | 7 | a1i 11 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π΅ = (Baseβπ )) |
9 | 2 | a1i 11 | . . . . . 6 β’ ((π β§ π₯ β π΅) β βΌ β V) |
10 | rng2idlring.r | . . . . . . 7 β’ (π β π β Rng) | |
11 | 10 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β π΅) β π β Rng) |
12 | 6, 8, 9, 11 | qusbas 17487 | . . . . 5 β’ ((π β§ π₯ β π΅) β (π΅ / βΌ ) = (Baseβπ)) |
13 | rngqiprngim.c | . . . . 5 β’ πΆ = (Baseβπ) | |
14 | 12, 13 | eqtr4di 2790 | . . . 4 β’ ((π β§ π₯ β π΅) β (π΅ / βΌ ) = πΆ) |
15 | 4, 14 | eleqtrd 2835 | . . 3 β’ ((π β§ π₯ β π΅) β [π₯] βΌ β πΆ) |
16 | rng2idlring.i | . . . . . . 7 β’ (π β πΌ β (2Idealβπ )) | |
17 | rng2idlring.j | . . . . . . 7 β’ π½ = (π βΎs πΌ) | |
18 | eqid 2732 | . . . . . . 7 β’ (Baseβπ½) = (Baseβπ½) | |
19 | 16, 17, 18 | 2idlbas 20861 | . . . . . 6 β’ (π β (Baseβπ½) = πΌ) |
20 | 16, 17, 18 | 2idlelbas 20862 | . . . . . . 7 β’ (π β ((Baseβπ½) β (LIdealβπ ) β§ (Baseβπ½) β (LIdealβ(opprβπ )))) |
21 | 20 | simprd 496 | . . . . . 6 β’ (π β (Baseβπ½) β (LIdealβ(opprβπ ))) |
22 | 19, 21 | eqeltrrd 2834 | . . . . 5 β’ (π β πΌ β (LIdealβ(opprβπ ))) |
23 | rng2idlring.u | . . . . . . . 8 β’ (π β π½ β Ring) | |
24 | ringrng 46641 | . . . . . . . 8 β’ (π½ β Ring β π½ β Rng) | |
25 | 23, 24 | syl 17 | . . . . . . 7 β’ (π β π½ β Rng) |
26 | 17, 25 | eqeltrrid 2838 | . . . . . 6 β’ (π β (π βΎs πΌ) β Rng) |
27 | 10, 16, 26 | rng2idl0 46743 | . . . . 5 β’ (π β (0gβπ ) β πΌ) |
28 | 10, 22, 27 | 3jca 1128 | . . . 4 β’ (π β (π β Rng β§ πΌ β (LIdealβ(opprβπ )) β§ (0gβπ ) β πΌ)) |
29 | rng2idlring.1 | . . . . . . . 8 β’ 1 = (1rβπ½) | |
30 | 18, 29 | ringidcl 20076 | . . . . . . 7 β’ (π½ β Ring β 1 β (Baseβπ½)) |
31 | 23, 30 | syl 17 | . . . . . 6 β’ (π β 1 β (Baseβπ½)) |
32 | 31, 19 | eleqtrd 2835 | . . . . 5 β’ (π β 1 β πΌ) |
33 | 32 | anim1ci 616 | . . . 4 β’ ((π β§ π₯ β π΅) β (π₯ β π΅ β§ 1 β πΌ)) |
34 | eqid 2732 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
35 | rng2idlring.t | . . . . 5 β’ Β· = (.rβπ ) | |
36 | eqid 2732 | . . . . 5 β’ (LIdealβ(opprβπ )) = (LIdealβ(opprβπ )) | |
37 | 34, 7, 35, 36 | rngridlmcl 46733 | . . . 4 β’ (((π β Rng β§ πΌ β (LIdealβ(opprβπ )) β§ (0gβπ ) β πΌ) β§ (π₯ β π΅ β§ 1 β πΌ)) β ( 1 Β· π₯) β πΌ) |
38 | 28, 33, 37 | syl2an2r 683 | . . 3 β’ ((π β§ π₯ β π΅) β ( 1 Β· π₯) β πΌ) |
39 | 15, 38 | opelxpd 5713 | . 2 β’ ((π β§ π₯ β π΅) β β¨[π₯] βΌ , ( 1 Β· π₯)β© β (πΆ Γ πΌ)) |
40 | rngqiprngim.f | . 2 β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
41 | 39, 40 | fmptd 7110 | 1 β’ (π β πΉ:π΅βΆ(πΆ Γ πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4633 β¦ cmpt 5230 Γ cxp 5673 βΆwf 6536 βcfv 6540 (class class class)co 7405 [cec 8697 / cqs 8698 Basecbs 17140 βΎs cress 17169 .rcmulr 17194 0gc0g 17381 /s cqus 17447 Γs cxps 17448 ~QG cqg 18996 1rcur 19998 Ringcrg 20049 opprcoppr 20141 LIdealclidl 20775 2Idealc2idl 20848 Rngcrng 46634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-ec 8701 df-qs 8705 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-qus 17451 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-2idl 20849 df-rng 46635 df-subrng 46709 |
This theorem is referenced by: rngqiprngghm 46764 rngqiprngimfo 46766 |
Copyright terms: Public domain | W3C validator |