MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf Structured version   Visualization version   GIF version

Theorem rngqiprngimf 21263
Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21229, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   (𝑥)   𝑅(𝑥)   · (𝑥)   1 (𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf
StepHypRef Expression
1 rngqiprngim.g . . . . . . 7 = (𝑅 ~QG 𝐼)
21ovexi 7444 . . . . . 6 ∈ V
32ecelqsi 8792 . . . . 5 (𝑥𝐵 → [𝑥] ∈ (𝐵 / ))
43adantl 481 . . . 4 ((𝜑𝑥𝐵) → [𝑥] ∈ (𝐵 / ))
5 rngqiprngim.q . . . . . . 7 𝑄 = (𝑅 /s )
65a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝑄 = (𝑅 /s ))
7 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
87a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝐵 = (Base‘𝑅))
92a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ∈ V)
10 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 ∈ Rng)
126, 8, 9, 11qusbas 17564 . . . . 5 ((𝜑𝑥𝐵) → (𝐵 / ) = (Base‘𝑄))
13 rngqiprngim.c . . . . 5 𝐶 = (Base‘𝑄)
1412, 13eqtr4di 2789 . . . 4 ((𝜑𝑥𝐵) → (𝐵 / ) = 𝐶)
154, 14eleqtrd 2837 . . 3 ((𝜑𝑥𝐵) → [𝑥] 𝐶)
16 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
17 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
18 eqid 2736 . . . . . . 7 (Base‘𝐽) = (Base‘𝐽)
1916, 17, 182idlbas 21229 . . . . . 6 (𝜑 → (Base‘𝐽) = 𝐼)
2016, 17, 182idlelbas 21230 . . . . . . 7 (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅))))
2120simprd 495 . . . . . 6 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅)))
2219, 21eqeltrrd 2836 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘(oppr𝑅)))
23 rng2idlring.u . . . . . . . 8 (𝜑𝐽 ∈ Ring)
24 ringrng 20250 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
2523, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Rng)
2617, 25eqeltrrid 2840 . . . . . 6 (𝜑 → (𝑅s 𝐼) ∈ Rng)
2710, 16, 26rng2idl0 21233 . . . . 5 (𝜑 → (0g𝑅) ∈ 𝐼)
2810, 22, 273jca 1128 . . . 4 (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼))
29 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
3018, 29ringidcl 20230 . . . . . . 7 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
3123, 30syl 17 . . . . . 6 (𝜑1 ∈ (Base‘𝐽))
3231, 19eleqtrd 2837 . . . . 5 (𝜑1𝐼)
3332anim1ci 616 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐵1𝐼))
34 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
35 rng2idlring.t . . . . 5 · = (.r𝑅)
36 eqid 2736 . . . . 5 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
3734, 7, 35, 36rngridlmcl 21183 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵1𝐼)) → ( 1 · 𝑥) ∈ 𝐼)
3828, 33, 37syl2an2r 685 . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) ∈ 𝐼)
3915, 38opelxpd 5698 . 2 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ (𝐶 × 𝐼))
40 rngqiprngim.f . 2 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
4139, 40fmptd 7109 1 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612  cmpt 5206   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  [cec 8722   / cqs 8723  Basecbs 17233  s cress 17256  .rcmulr 17277  0gc0g 17458   /s cqus 17524   ×s cxps 17525   ~QG cqg 19110  Rngcrng 20117  1rcur 20146  Ringcrg 20198  opprcoppr 20301  LIdealclidl 21172  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-subrng 20511  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-2idl 21216
This theorem is referenced by:  rngqiprngghm  21265  rngqiprngimfo  21267
  Copyright terms: Public domain W3C validator