MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf Structured version   Visualization version   GIF version

Theorem rngqiprngimf 21234
Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21200, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   (𝑥)   𝑅(𝑥)   · (𝑥)   1 (𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf
StepHypRef Expression
1 rngqiprngim.g . . . . . . 7 = (𝑅 ~QG 𝐼)
21ovexi 7380 . . . . . 6 ∈ V
32ecelqsi 8694 . . . . 5 (𝑥𝐵 → [𝑥] ∈ (𝐵 / ))
43adantl 481 . . . 4 ((𝜑𝑥𝐵) → [𝑥] ∈ (𝐵 / ))
5 rngqiprngim.q . . . . . . 7 𝑄 = (𝑅 /s )
65a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝑄 = (𝑅 /s ))
7 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
87a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝐵 = (Base‘𝑅))
92a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ∈ V)
10 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 ∈ Rng)
126, 8, 9, 11qusbas 17449 . . . . 5 ((𝜑𝑥𝐵) → (𝐵 / ) = (Base‘𝑄))
13 rngqiprngim.c . . . . 5 𝐶 = (Base‘𝑄)
1412, 13eqtr4di 2784 . . . 4 ((𝜑𝑥𝐵) → (𝐵 / ) = 𝐶)
154, 14eleqtrd 2833 . . 3 ((𝜑𝑥𝐵) → [𝑥] 𝐶)
16 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
17 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
18 eqid 2731 . . . . . . 7 (Base‘𝐽) = (Base‘𝐽)
1916, 17, 182idlbas 21200 . . . . . 6 (𝜑 → (Base‘𝐽) = 𝐼)
2016, 17, 182idlelbas 21201 . . . . . . 7 (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅))))
2120simprd 495 . . . . . 6 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅)))
2219, 21eqeltrrd 2832 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘(oppr𝑅)))
23 rng2idlring.u . . . . . . . 8 (𝜑𝐽 ∈ Ring)
24 ringrng 20203 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
2523, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Rng)
2617, 25eqeltrrid 2836 . . . . . 6 (𝜑 → (𝑅s 𝐼) ∈ Rng)
2710, 16, 26rng2idl0 21204 . . . . 5 (𝜑 → (0g𝑅) ∈ 𝐼)
2810, 22, 273jca 1128 . . . 4 (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼))
29 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
3018, 29ringidcl 20183 . . . . . . 7 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
3123, 30syl 17 . . . . . 6 (𝜑1 ∈ (Base‘𝐽))
3231, 19eleqtrd 2833 . . . . 5 (𝜑1𝐼)
3332anim1ci 616 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐵1𝐼))
34 eqid 2731 . . . . 5 (0g𝑅) = (0g𝑅)
35 rng2idlring.t . . . . 5 · = (.r𝑅)
36 eqid 2731 . . . . 5 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
3734, 7, 35, 36rngridlmcl 21154 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵1𝐼)) → ( 1 · 𝑥) ∈ 𝐼)
3828, 33, 37syl2an2r 685 . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) ∈ 𝐼)
3915, 38opelxpd 5653 . 2 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ (𝐶 × 𝐼))
40 rngqiprngim.f . 2 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
4139, 40fmptd 7047 1 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  [cec 8620   / cqs 8621  Basecbs 17120  s cress 17141  .rcmulr 17162  0gc0g 17343   /s cqus 17409   ×s cxps 17410   ~QG cqg 19035  Rngcrng 20070  1rcur 20099  Ringcrg 20151  opprcoppr 20254  LIdealclidl 21143  2Idealc2idl 21186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-subrng 20461  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-2idl 21187
This theorem is referenced by:  rngqiprngghm  21236  rngqiprngimfo  21238
  Copyright terms: Public domain W3C validator