| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngimf | Structured version Visualization version GIF version | ||
| Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21173, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngimf | ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 2 | 1 | ovexi 7421 | . . . . . 6 ⊢ ∼ ∈ V |
| 3 | 2 | ecelqsi 8743 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 5 | rngqiprngim.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑄 = (𝑅 /s ∼ )) |
| 7 | rng2idlring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 9 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∼ ∈ V) |
| 10 | rng2idlring.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Rng) |
| 12 | 6, 8, 9, 11 | qusbas 17508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = (Base‘𝑄)) |
| 13 | rngqiprngim.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑄) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = 𝐶) |
| 15 | 4, 14 | eleqtrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ 𝐶) |
| 16 | rng2idlring.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 17 | rng2idlring.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 19 | 16, 17, 18 | 2idlbas 21173 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 20 | 16, 17, 18 | 2idlelbas 21174 | . . . . . . 7 ⊢ (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅)))) |
| 21 | 20 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅))) |
| 22 | 19, 21 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘(oppr‘𝑅))) |
| 23 | rng2idlring.u | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 24 | ringrng 20194 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 26 | 17, 25 | eqeltrrid 2833 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 27 | 10, 16, 26 | rng2idl0 21177 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) |
| 28 | 10, 22, 27 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼)) |
| 29 | rng2idlring.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐽) | |
| 30 | 18, 29 | ringidcl 20174 | . . . . . . 7 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 31 | 23, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 32 | 31, 19 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 33 | 32 | anim1ci 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) |
| 34 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 35 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 36 | eqid 2729 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 37 | 34, 7, 35, 36 | rngridlmcl 21127 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → ( 1 · 𝑥) ∈ 𝐼) |
| 38 | 28, 33, 37 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) ∈ 𝐼) |
| 39 | 15, 38 | opelxpd 5677 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 ∈ (𝐶 × 𝐼)) |
| 40 | rngqiprngim.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 41 | 39, 40 | fmptd 7086 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 [cec 8669 / cqs 8670 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 0gc0g 17402 /s cqus 17468 ×s cxps 17469 ~QG cqg 19054 Rngcrng 20061 1rcur 20090 Ringcrg 20142 opprcoppr 20245 LIdealclidl 21116 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-subrng 20455 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-2idl 21160 |
| This theorem is referenced by: rngqiprngghm 21209 rngqiprngimfo 21211 |
| Copyright terms: Public domain | W3C validator |