| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngimf | Structured version Visualization version GIF version | ||
| Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21149, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng2idlring.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rng2idlring.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rng2idlring.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rng2idlring.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rng2idlring.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng2idlring.t | ⊢ · = (.r‘𝑅) |
| rng2idlring.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngim.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngim.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngim.c | ⊢ 𝐶 = (Base‘𝑄) |
| rngqiprngim.p | ⊢ 𝑃 = (𝑄 ×s 𝐽) |
| rngqiprngim.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) |
| Ref | Expression |
|---|---|
| rngqiprngimf | ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngim.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 2 | 1 | ovexi 7403 | . . . . . 6 ⊢ ∼ ∈ V |
| 3 | 2 | ecelqsi 8720 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ (𝐵 / ∼ )) |
| 5 | rngqiprngim.q | . . . . . . 7 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑄 = (𝑅 /s ∼ )) |
| 7 | rng2idlring.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 9 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∼ ∈ V) |
| 10 | rng2idlring.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Rng) |
| 12 | 6, 8, 9, 11 | qusbas 17484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = (Base‘𝑄)) |
| 13 | rngqiprngim.c | . . . . 5 ⊢ 𝐶 = (Base‘𝑄) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐵 / ∼ ) = 𝐶) |
| 15 | 4, 14 | eleqtrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ ∈ 𝐶) |
| 16 | rng2idlring.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 17 | rng2idlring.j | . . . . . . 7 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 19 | 16, 17, 18 | 2idlbas 21149 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 20 | 16, 17, 18 | 2idlelbas 21150 | . . . . . . 7 ⊢ (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅)))) |
| 21 | 20 | simprd 495 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr‘𝑅))) |
| 22 | 19, 21 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘(oppr‘𝑅))) |
| 23 | rng2idlring.u | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 24 | ringrng 20170 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 25 | 23, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 26 | 17, 25 | eqeltrrid 2833 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 27 | 10, 16, 26 | rng2idl0 21153 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) |
| 28 | 10, 22, 27 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼)) |
| 29 | rng2idlring.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐽) | |
| 30 | 18, 29 | ringidcl 20150 | . . . . . . 7 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 31 | 23, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 32 | 31, 19 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 33 | 32 | anim1ci 616 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) |
| 34 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 35 | rng2idlring.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 36 | eqid 2729 | . . . . 5 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 37 | 34, 7, 35, 36 | rngridlmcl 21103 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)) ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼)) → ( 1 · 𝑥) ∈ 𝐼) |
| 38 | 28, 33, 37 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) ∈ 𝐼) |
| 39 | 15, 38 | opelxpd 5670 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 〈[𝑥] ∼ , ( 1 · 𝑥)〉 ∈ (𝐶 × 𝐼)) |
| 40 | rngqiprngim.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 41 | 39, 40 | fmptd 7068 | 1 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐶 × 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ↦ cmpt 5183 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 [cec 8646 / cqs 8647 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 0gc0g 17378 /s cqus 17444 ×s cxps 17445 ~QG cqg 19030 Rngcrng 20037 1rcur 20066 Ringcrg 20118 opprcoppr 20221 LIdealclidl 21092 2Idealc2idl 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-subrng 20431 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-2idl 21136 |
| This theorem is referenced by: rngqiprngghm 21185 rngqiprngimfo 21187 |
| Copyright terms: Public domain | W3C validator |