MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf Structured version   Visualization version   GIF version

Theorem rngqiprngimf 21330
Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21296, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   (𝑥)   𝑅(𝑥)   · (𝑥)   1 (𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf
StepHypRef Expression
1 rngqiprngim.g . . . . . . 7 = (𝑅 ~QG 𝐼)
21ovexi 7482 . . . . . 6 ∈ V
32ecelqsi 8831 . . . . 5 (𝑥𝐵 → [𝑥] ∈ (𝐵 / ))
43adantl 481 . . . 4 ((𝜑𝑥𝐵) → [𝑥] ∈ (𝐵 / ))
5 rngqiprngim.q . . . . . . 7 𝑄 = (𝑅 /s )
65a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝑄 = (𝑅 /s ))
7 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
87a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝐵 = (Base‘𝑅))
92a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ∈ V)
10 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 ∈ Rng)
126, 8, 9, 11qusbas 17605 . . . . 5 ((𝜑𝑥𝐵) → (𝐵 / ) = (Base‘𝑄))
13 rngqiprngim.c . . . . 5 𝐶 = (Base‘𝑄)
1412, 13eqtr4di 2798 . . . 4 ((𝜑𝑥𝐵) → (𝐵 / ) = 𝐶)
154, 14eleqtrd 2846 . . 3 ((𝜑𝑥𝐵) → [𝑥] 𝐶)
16 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
17 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
18 eqid 2740 . . . . . . 7 (Base‘𝐽) = (Base‘𝐽)
1916, 17, 182idlbas 21296 . . . . . 6 (𝜑 → (Base‘𝐽) = 𝐼)
2016, 17, 182idlelbas 21297 . . . . . . 7 (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅))))
2120simprd 495 . . . . . 6 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅)))
2219, 21eqeltrrd 2845 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘(oppr𝑅)))
23 rng2idlring.u . . . . . . . 8 (𝜑𝐽 ∈ Ring)
24 ringrng 20308 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
2523, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Rng)
2617, 25eqeltrrid 2849 . . . . . 6 (𝜑 → (𝑅s 𝐼) ∈ Rng)
2710, 16, 26rng2idl0 21300 . . . . 5 (𝜑 → (0g𝑅) ∈ 𝐼)
2810, 22, 273jca 1128 . . . 4 (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼))
29 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
3018, 29ringidcl 20289 . . . . . . 7 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
3123, 30syl 17 . . . . . 6 (𝜑1 ∈ (Base‘𝐽))
3231, 19eleqtrd 2846 . . . . 5 (𝜑1𝐼)
3332anim1ci 615 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐵1𝐼))
34 eqid 2740 . . . . 5 (0g𝑅) = (0g𝑅)
35 rng2idlring.t . . . . 5 · = (.r𝑅)
36 eqid 2740 . . . . 5 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
3734, 7, 35, 36rngridlmcl 21250 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵1𝐼)) → ( 1 · 𝑥) ∈ 𝐼)
3828, 33, 37syl2an2r 684 . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) ∈ 𝐼)
3915, 38opelxpd 5739 . 2 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ (𝐶 × 𝐼))
40 rngqiprngim.f . 2 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
4139, 40fmptd 7148 1 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  Basecbs 17258  s cress 17287  .rcmulr 17312  0gc0g 17499   /s cqus 17565   ×s cxps 17566   ~QG cqg 19162  Rngcrng 20179  1rcur 20208  Ringcrg 20260  opprcoppr 20359  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-subrng 20572  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  rngqiprngghm  21332  rngqiprngimfo  21334
  Copyright terms: Public domain W3C validator