MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngimf Structured version   Visualization version   GIF version

Theorem rngqiprngimf 21214
Description: 𝐹 is a function from (the base set of) a non-unital ring to the product of the (base set 𝐶 of the) quotient with a two-sided ideal and the (base set 𝐼 of the) two-sided ideal (because of 2idlbas 21180, (Base‘𝐽) = 𝐼!) (Contributed by AV, 21-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngimf (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   (𝑥)   𝑅(𝑥)   · (𝑥)   1 (𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngimf
StepHypRef Expression
1 rngqiprngim.g . . . . . . 7 = (𝑅 ~QG 𝐼)
21ovexi 7424 . . . . . 6 ∈ V
32ecelqsi 8746 . . . . 5 (𝑥𝐵 → [𝑥] ∈ (𝐵 / ))
43adantl 481 . . . 4 ((𝜑𝑥𝐵) → [𝑥] ∈ (𝐵 / ))
5 rngqiprngim.q . . . . . . 7 𝑄 = (𝑅 /s )
65a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝑄 = (𝑅 /s ))
7 rng2idlring.b . . . . . . 7 𝐵 = (Base‘𝑅)
87a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → 𝐵 = (Base‘𝑅))
92a1i 11 . . . . . 6 ((𝜑𝑥𝐵) → ∈ V)
10 rng2idlring.r . . . . . . 7 (𝜑𝑅 ∈ Rng)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 ∈ Rng)
126, 8, 9, 11qusbas 17515 . . . . 5 ((𝜑𝑥𝐵) → (𝐵 / ) = (Base‘𝑄))
13 rngqiprngim.c . . . . 5 𝐶 = (Base‘𝑄)
1412, 13eqtr4di 2783 . . . 4 ((𝜑𝑥𝐵) → (𝐵 / ) = 𝐶)
154, 14eleqtrd 2831 . . 3 ((𝜑𝑥𝐵) → [𝑥] 𝐶)
16 rng2idlring.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
17 rng2idlring.j . . . . . . 7 𝐽 = (𝑅s 𝐼)
18 eqid 2730 . . . . . . 7 (Base‘𝐽) = (Base‘𝐽)
1916, 17, 182idlbas 21180 . . . . . 6 (𝜑 → (Base‘𝐽) = 𝐼)
2016, 17, 182idlelbas 21181 . . . . . . 7 (𝜑 → ((Base‘𝐽) ∈ (LIdeal‘𝑅) ∧ (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅))))
2120simprd 495 . . . . . 6 (𝜑 → (Base‘𝐽) ∈ (LIdeal‘(oppr𝑅)))
2219, 21eqeltrrd 2830 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘(oppr𝑅)))
23 rng2idlring.u . . . . . . . 8 (𝜑𝐽 ∈ Ring)
24 ringrng 20201 . . . . . . . 8 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
2523, 24syl 17 . . . . . . 7 (𝜑𝐽 ∈ Rng)
2617, 25eqeltrrid 2834 . . . . . 6 (𝜑 → (𝑅s 𝐼) ∈ Rng)
2710, 16, 26rng2idl0 21184 . . . . 5 (𝜑 → (0g𝑅) ∈ 𝐼)
2810, 22, 273jca 1128 . . . 4 (𝜑 → (𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼))
29 rng2idlring.1 . . . . . . . 8 1 = (1r𝐽)
3018, 29ringidcl 20181 . . . . . . 7 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
3123, 30syl 17 . . . . . 6 (𝜑1 ∈ (Base‘𝐽))
3231, 19eleqtrd 2831 . . . . 5 (𝜑1𝐼)
3332anim1ci 616 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐵1𝐼))
34 eqid 2730 . . . . 5 (0g𝑅) = (0g𝑅)
35 rng2idlring.t . . . . 5 · = (.r𝑅)
36 eqid 2730 . . . . 5 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
3734, 7, 35, 36rngridlmcl 21134 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅)) ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵1𝐼)) → ( 1 · 𝑥) ∈ 𝐼)
3828, 33, 37syl2an2r 685 . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) ∈ 𝐼)
3915, 38opelxpd 5680 . 2 ((𝜑𝑥𝐵) → ⟨[𝑥] , ( 1 · 𝑥)⟩ ∈ (𝐶 × 𝐼))
40 rngqiprngim.f . 2 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
4139, 40fmptd 7089 1 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  [cec 8672   / cqs 8673  Basecbs 17186  s cress 17207  .rcmulr 17228  0gc0g 17409   /s cqus 17475   ×s cxps 17476   ~QG cqg 19061  Rngcrng 20068  1rcur 20097  Ringcrg 20149  opprcoppr 20252  LIdealclidl 21123  2Idealc2idl 21166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-subrng 20462  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-2idl 21167
This theorem is referenced by:  rngqiprngghm  21216  rngqiprngimfo  21218
  Copyright terms: Public domain W3C validator